
mpv

a media player

Copyright: GPLv2+

Manual
section:

1

Manual group: multimedia

SYNOPSIS
mpv [options] [file|URL|PLAYLIST|-]
mpv [options] files

DESCRIPTION
mpv is a media player based on MPlayer and mplayer2. It supports a wide variety of video file formats,
audio and video codecs, and subtitle types. Special input URL types are available to read input from a
variety of sources other than disk files. Depending on platform, a variety of different video and audio
output methods are supported.

Usage examples to get you started quickly can be found at the end of this man page.

INTERACTIVE CONTROL
mpv has a fully configurable, command-driven control layer which allows you to control mpv using
keyboard, mouse, or remote control (there is no LIRC support - configure remotes as input devices
instead).

See the --input- options for ways to customize it.

Keyboard Control
LEFT and RIGHT

Seek backward/forward 5 seconds. Shift+arrow does a 1 second exact seek (see --hr-seek).

UP and DOWN

Seek forward/backward 1 minute. Shift+arrow does a 5 second exact seek (see --hr-seek).

Ctrl+LEFT and Ctrl+RIGHT

Seek to the previous/next subtitle. Subject to some restrictions and might not work always; see
sub_seek command.

[and]

Decrease/increase current playback speed by 10%.

{ and }

Halve/double current playback speed.

BACKSPACE

Reset playback speed to normal.

< and >

Go backward/forward in the playlist.

ENTER

Go forward in the playlist.

p / SPACE

Pause (pressing again unpauses).

.

Step forward. Pressing once will pause, every consecutive press will play one frame and then go into
pause mode again.

,

Step backward. Pressing once will pause, every consecutive press will play one frame in reverse and
then go into pause mode again.

q

Stop playing and quit.

Q

Like q, but store the current playback position. Playing the same file later will resume at the old
playback position if possible.

/ and *

Decrease/increase volume.

9 and 0

Decrease/increase volume.

m

Mute sound.

_

Cycle through the available video tracks.

#

Cycle through the available audio tracks.

f

Toggle fullscreen (see also --fs).

ESC

Exit fullscreen mode.

T

Toggle stay-on-top (see also --ontop).

w and e

Decrease/increase pan-and-scan range.

o (also P)

Show progression bar, elapsed time and total duration on the OSD.

O

Toggle OSD states between normal and playback time/duration.

v

Toggle subtitle visibility.

j and J

Cycle through the available subtitles.

x and z

Adjust subtitle delay by +/- 0.1 seconds.

l

Set/clear A-B loop points. See ab_loop command for details.

L

Toggle infinite looping.

Ctrl + and Ctrl -

Adjust audio delay by +/- 0.1 seconds.

u

Switch between applying no style overrides to SSA/ASS subtitles, and overriding them almost
completely with the normal subtitle style. See --ass-style-override for more info.

V

Toggle subtitle VSFilter aspect compatibility mode. See --ass-vsfilter-aspect-compat for
more info.

r and t

Move subtitles up/down.

s

Take a screenshot.

S

Take a screenshot, without subtitles. (Whether this works depends on VO driver support.)

Ctrl s

Take a screenshot, as the window shows it (with subtitles, OSD, and scaled video).

I

Show filename on the OSD.

PGUP and PGDWN

Seek to the beginning of the previous/next chapter. In most cases, "previous" will actually go to the
beginning of the current chapter; see --chapter-seek-threshold.

Shift+PGUP and Shift+PGDWN

Seek backward or forward by 10 minutes. (This used to be mapped to PGUP/PGDWN without Shift.)

d

Activate/deactivate deinterlacer.

A

Cycle aspect ratio override.

(The following keys are valid only when using a video output that supports the corresponding adjustment,
or the software equalizer (--vf=eq).)

1 and 2

Adjust contrast.

3 and 4

Adjust brightness.

5 and 6

Adjust gamma.

7 and 8

Adjust saturation.

(The following keys are valid only on OS X.)

command + 0

Resize video window to half its original size. (On other platforms, you can bind keys to change the
window-scale property.)

command + 1

Resize video window to its original size.

command + 2

Resize video window to double its original size.

command + f

Toggle fullscreen (see also --fs).

command + [and command +]

Set video window alpha.

(The following keys are valid if you have a keyboard with multimedia keys.)

PAUSE

Pause.

STOP

Stop playing and quit.

PREVIOUS and NEXT

Seek backward/forward 1 minute.

(The following keys are only valid if you compiled with TV or DVB input support.)

h and k

Select previous/next channel.

Mouse Control
button 3 and button 4

Seek backward/forward 1 minute.

button 5 and button 6

Decrease/increase volume.

USAGE
Every flag option has a no-flag counterpart, e.g. the opposite of the --fs option is --no-fs. --fs=yes
is same as --fs, --fs=no is the same as --no-fs.

If an option is marked as (XXX only), it will only work in combination with the XXX option or if XXX is
compiled in.

Escaping spaces and other special characters
Keep in mind that the shell will partially parse and mangle the arguments you pass to mpv. For example,
you might need to quote or escape options and filenames:

mpv "filename with spaces.mkv" --title="window title"

It gets more complicated if the suboption parser is involved. The suboption parser puts several options
into a single string, and passes them to a component at once, instead of using multiple options on the
level of the command line.

The suboption parser can quote strings with ", ', and [...]. Additionally, there is a special form of
quoting with %n% described below.

For example, the opengl VO can take multiple options:

mpv test.mkv --vo=opengl:scale=lanczos:icc-profile=file.icc,xv

This passes scale=lanczos and icc-profile=file.icc to opengl, and also specifies xv as
fallback VO. If the icc-profile path contains spaces or characters like , or :, you need to quote them:

mpv '--vo=opengl:icc-profile="file with spaces.icc",xv'

Shells may actually strip some quotes from the string passed to the commandline, so the example quotes
the string twice, ensuring that mpv receives the " quotes.

The [...] form of quotes wraps everything between [and]. It's useful with shells that don't interpret
these characters in the middle of an argument (like bash). These quotes are balanced (since mpv 0.9.0):
the [and] nest, and the quote terminates on the last] that has no matching [within the string. (For
example, [a[b]c] results in a[b]c.)

The fixed-length quoting syntax is intended for use with external scripts and programs.

It is started with % and has the following format:

%n%string_of_length_n

Examples

mpv --ao=pcm:file=%10%C:test.wav test.avi

Or in a script:

mpv --ao=pcm:file=%`expr length "$NAME"`%"$NAME" test.avi

Suboptions passed to the client API are also subject to escaping. Using mpv_set_option_string() is
exactly like passing --name=data to the command line (but without shell processing of the string).
Some options support passing values in a more structured way instead of flat strings, and can avoid the
suboption parsing mess. For example, --vf supports MPV_FORMAT_NODE, which lets you pass
suboptions as a nested data structure of maps and arrays. (--vo supports this in the same way, although
this fact is undocumented.)

Paths
Some care must be taken when passing arbitrary paths and filenames to mpv. For example, paths starting
with - will be interpreted as options. Likewise, if a path contains the sequence ://, the string before that
might be interpreted as protocol prefix, even though :// can be part of a legal UNIX path. To avoid
problems with arbitrary paths, you should be sure that absolute paths passed to mpv start with /, and
relative paths with ./.

The name - itself is interpreted as stdin, and will cause mpv to disable console controls. (Which makes it
suitable for playing data piped to stdin.)

For paths passed to suboptions, the situation is further complicated by the need to escape special
characters. To work this around, the path can be additionally wrapped in the fixed-length syntax, e.g.
%n%string_of_length_n (see above).

Some mpv options interpret paths starting with ~. Currently, the prefix ~~/ expands to the mpv
configuration directory (usually ~/.config/mpv/). ~/ expands to the user's home directory. (The
trailing / is always required.) There are the following paths as well:

Name Meaning

~~home/ same as ~~/

~~global/ the global config path, if available (not on win32)

~~osxbundle/ the OSX bundle resource path (OSX only)

~~desktop/ the path to the desktop (win32, OSX)

Per-File Options
When playing multiple files, any option given on the command line usually affects all files. Example:

mpv --a file1.mkv --b file2.mkv --c

File Active options

file1.mkv --a --b --c

file2.mkv --a --b --c

(This is different from MPlayer and mplayer2.)

Also, if any option is changed at runtime (via input commands), they are not reset when a new file is
played.

Sometimes, it is useful to change options per-file. This can be achieved by adding the special per-file
markers --{ and --}. (Note that you must escape these on some shells.) Example:

mpv --a file1.mkv --b --\{ --c file2.mkv --d file3.mkv --e --\} file4.mkv --f

File Active options

file1.mkv --a --b --f

file2.mkv --a --b --f --c --d --e

file3.mkv --a --b --f --c --d --e

file4.mkv --a --b --f

Additionally, any file-local option changed at runtime is reset when the current file stops playing. If option
--c is changed during playback of file2.mkv, it is reset when advancing to file3.mkv. This only
affects file-local options. The option --a is never reset here.

CONFIGURATION FILES

Location and Syntax
You can put all of the options in configuration files which will be read every time mpv is run. The
system-wide configuration file 'mpv.conf' is in your configuration directory (e.g. /etc/mpv or
/usr/local/etc/mpv), the user-specific one is ~/.config/mpv/mpv.conf. For details and platform
specifics see the FILES section. User-specific options override system-wide options and options given on
the command line override either. The syntax of the configuration files is option=<value>; everything
after a # is considered a comment. Options that work without values can be enabled by setting them to
yes and disabled by setting them to no. Even suboptions can be specified in this way.

Example configuration file

Use opengl video output by default.
vo=opengl
Use quotes for text that can contain spaces:
status-msg="Time: ${time-pos}"

Escaping spaces and special characters
This is done like with command line options. The shell is not involved here, but option values still need to
be quoted as a whole if it contains certain characters like spaces. A config entry can be quoted with "
and ', as well as with the fixed-length syntax (%n%) mentioned before. This is like passing the exact
contents of the quoted string as command line option. C-style escapes are currently _not_ interpreted on
this level, although some options do this manually. (This is a mess and should probably be changed at
some point.)

Putting Command Line Options into the Configuration File
Almost all command line options can be put into the configuration file. Here is a small guide:

Option Configuration file entry

--flag flag

-opt val opt=val

--opt=val opt=val

-opt "has spaces" opt="has spaces"

File-specific Configuration Files
You can also write file-specific configuration files. If you wish to have a configuration file for a file called
'video.avi', create a file named 'video.avi.conf' with the file-specific options in it and put it in
~/.config/mpv/. You can also put the configuration file in the same directory as the file to be played.
Both require you to set the --use-filedir-conf option (either on the command line or in your global
config file). If a file-specific configuration file is found in the same directory, no file-specific configuration is
loaded from ~/.config/mpv. In addition, the --use-filedir-conf option enables directory-specific
configuration files. For this, mpv first tries to load a mpv.conf from the same directory as the file played
and then tries to load any file-specific configuration.

Profiles
To ease working with different configurations, profiles can be defined in the configuration files. A profile
starts with its name in square brackets, e.g. [my-profile]. All following options will be part of the
profile. A description (shown by --profile=help) can be defined with the profile-desc option. To
end the profile, start another one or use the profile name default to continue with normal options.

Example mpv profile

[vo.vdpau]
Use hardware decoding
hwdec=vdpau

[protocol.dvd]
profile-desc="profile for dvd:// streams"
alang=en

[extension.flv]
profile-desc="profile for .flv files"
vf=flip

[ao.alsa]
device=spdif

TAKING SCREENSHOTS
Screenshots of the currently played file can be taken using the 'screenshot' input mode command, which
is by default bound to the s key. Files named shotNNNN.jpg will be saved in the working directory,
using the first available number - no files will be overwritten.

A screenshot will usually contain the unscaled video contents at the end of the video filter chain and
subtitles. By default, S takes screenshots without subtitles, while s includes subtitles.

Unlike with MPlayer, the screenshot video filter is not required. This filter was never required in mpv,
and has been removed.

TERMINAL STATUS LINE
During playback, mpv shows the playback status on the terminal. It looks like something like this:

AV: 00:03:12 / 00:24:25 (13%) A-V: -0.000

The status line can be overridden with the --term-status-msg option.

The following is a list of things that can show up in the status line. Input properties, that can be used to get
the same information manually, are also listed.

• AV: or V: (video only) or A: (audio only)

• The current time position in HH:MM:SS format (playback-time property)

• The total file duration (absent if unknown) (length property)

• Playback speed, e.g. `` x2.0``. Only visible if the speed is not normal. This is the user-requested
speed, and not the actual speed (usually they should be the same, unless playback is too slow).
(speed property.)

• Playback percentage, e.g. (13%). How much of the file has been played. Normally calculated out of
playback position and duration, but can fallback to other methods (like byte position) if these are not
available. (percent-pos property.)

• The audio/video sync as A-V: 0.000. This is the difference between audio and video time.
Normally it should be 0 or close to 0. If it's growing, it might indicate a playback problem. (avsync
property.)

• Total A/V sync change, e.g. ct: -0.417. Normally invisible. Can show up if there is audio
"missing", or not enough frames can be dropped. Usually this will indicate a problem.
(total-avsync-change property.)

• Encoding state in {...}, only shown in encoding mode.

• Display sync state. If display sync is active (display-sync-active property), this shows
DS: +0.02598%, where the number is the speed change factor applied to audio to achieve sync to
display, expressed in percent deviation from 1.0 (audio-speed-correction property). In sync
modes which don't resample, this will always be +0.00000%.

• Missed frames, e.g. Missed: 4. (vo-missed-frame-count property.) Shows up in display sync
mode only. This is incremented each time a frame took longer to display than intended.

• Dropped frames, e.g. Dropped: 4. Shows up only if the count is not 0. Can grow if the video
framerate is higher than that of the display, or if video rendering is too slow. Also can be

incremented on "hiccups" and when the video frame couldn't be displayed on time.
(vo-drop-frame-count property.) If the decoder drops frames, the number of decoder-dropped
frames is appended to the display as well, e.g.: Dropped: 4/34. This happens only if decoder
frame dropping is enabled with the --framedrop options. (drop-frame-count property.)

• Cache state, e.g. Cache: 2s+134KB. Visible if the stream cache is enabled. The first value shows
the amount of video buffered in the demuxer in seconds, the second value shows additional data
buffered in the stream cache in kilobytes. (demuxer-cache-duration and cache-used
properties.)

PROTOCOLS
http://..., https://, ...

Many network protocols are supported, but the protocol prefix must always be specified. mpv will
never attempt to guess whether a filename is actually a network address. A protocol prefix is always
required.

Note that not all prefixes are documented here. Undocumented prefixes are either aliases to
documented protocols, or are just redirections to protocols implemented and documented in FFmpeg.

-

Play data from stdin.

smb://PATH

Play a path from Samba share.

bd://[title][/device] --bluray-device=PATH

Play a Blu-Ray disc. Currently, this does not accept ISO files. Instead, you must mount the ISO file as
filesystem, and point --bluray-device to the mounted directory directly.

dvd://[title|[starttitle]-endtitle][/device] --dvd-device=PATH

Play a DVD. DVD menus are not supported. If no title is given, the longest title is auto-selected.

dvdnav:// is an old alias for dvd:// and does exactly the same thing.

dvdread://...:

Play a DVD using the old libdvdread code. This is what MPlayer and older mpv versions use for
dvd://. Use is discouraged. It's provided only for compatibility and for transition.

tv://[channel][/input_id] --tv-...

Analogue TV via V4L. Also useful for webcams. (Linux only.)

pvr:// --pvr-...

PVR. (Linux only.)

dvb://[cardnumber@]channel --dvbin-...

Digital TV via DVB. (Linux only.)

mf://[filemask|@listfile] --mf-...

Play a series of images as video.

cdda://track[-endtrack][:speed][/device] --cdrom-device=PATH --cdda-...

Play CD.

lavf://...

Access any FFmpeg/Libav libavformat protocol. Basically, this passed the string after the // directly
to libavformat.

av://type:options

This is intended for using libavdevice inputs. type is the libavdevice demuxer name, and options
is the (pseudo-)filename passed to the demuxer.

For example, mpv av://lavfi:mandelbrot makes use of the libavfilter wrapper included in
libavdevice, and will use the mandelbrot source filter to generate input data.

avdevice:// is an alias.

file://PATH

A local path as URL. Might be useful in some special use-cases. Note that PATH itself should start
with a third / to make the path an absolute path.

fd://123

Read data from the given UNIX FD (for example 123). This is similar to piping data to stdin via -, but
can use an arbitrary file descriptor. Will not work correctly on MS Windows.

edl://[edl specification as in edl-mpv.rst]

Stitch together parts of multiple files and play them.

null://

Simulate an empty file.

memory://data

Use the data part as source data.

PSEUDO GUI MODE
mpv has no official GUI, other than the OSC (ON SCREEN CONTROLLER), which is not a full GUI and is
not meant to be. However, to compensate for the lack of expected GUI behavior, mpv will in some cases
start with some settings changed to behave slightly more like a GUI mode.

Currently this happens only in the following cases:

• if started using the mpv.desktop file on Linux (e.g. started from menus or file associations
provided by desktop environments)

• if started from explorer.exe on Windows (technically, if it was started on Windows, and all of the
stdout/stderr/stdin handles are unset)

• manually adding --profile=pseudo-gui to the command line

This mode implicitly adds --profile=pseudo-gui to the command line, with the pseudo-gui profile
being predefined with the following contents:

[pseudo-gui]
terminal=no
force-window=yes
idle=once
screenshot-directory=~~desktop/

This follows the mpv config file format. To customize pseudo-GUI mode, you can put your own
pseudo-gui profile into your mpv.conf. This profile will enhance the default profile, rather than
overwrite it.

The profile always overrides other settings in mpv.conf.

OPTIONS

Track Selection
--alang=<languagecode[,languagecode,...]>

Specify a priority list of audio languages to use. Different container formats employ different language
codes. DVDs use ISO 639-1 two-letter language codes, Matroska, MPEG-TS and NUT use ISO
639-2 three-letter language codes, while OGM uses a free-form identifier. See also --aid.

Examples

mpv dvd://1 --alang=hu,en

Chooses the Hungarian language track on a DVD and falls back on English if Hungarian
is not available.

mpv --alang=jpn example.mkv

Plays a Matroska file in Japanese.

--slang=<languagecode[,languagecode,...]>

Specify a priority list of subtitle languages to use. Different container formats employ different
language codes. DVDs use ISO 639-1 two letter language codes, Matroska uses ISO 639-2 three
letter language codes while OGM uses a free-form identifier. See also --sid.

Examples

• mpv dvd://1 --slang=hu,en chooses the Hungarian subtitle track on a DVD and
falls back on English if Hungarian is not available.

• mpv --slang=jpn example.mkv plays a Matroska file with Japanese subtitles.

--aid=<ID|auto|no>

Select audio track. auto selects the default, no disables audio. See also --alang. mpv normally
prints available audio tracks on the terminal when starting playback of a file.

--sid=<ID|auto|no>

Display the subtitle stream specified by <ID>. auto selects the default, no disables subtitles.

See also --slang, --no-sub.

--vid=<ID|auto|no>

Select video channel. auto selects the default, no disables video.

--ff-aid=<ID|auto|no>, --ff-sid=<ID|auto|no>, --ff-vid=<ID|auto|no>

Select audio/subtitle/video streams by the FFmpeg stream index. The FFmpeg stream index is
relatively arbitrary, but useful when interacting with other software using FFmpeg (consider
ffprobe).

Note that with external tracks (added with --sub-file and similar options), there will be streams
with duplicate IDs. In this case, the first stream in order is selected.

--edition=<ID|auto>

(Matroska files only) Specify the edition (set of chapters) to use, where 0 is the first. If set to auto
(the default), mpv will choose the first edition declared as a default, or if there is no default, the first
edition defined.

Playback Control
--start=<relative time>

Seek to given time position.

The general format for absolute times is [[hh:]mm:]ss[.ms]. If the time is given with a prefix of +
or -, the seek is relative from the start or end of the file.

pp% seeks to percent position pp (0-100).

#c seeks to chapter number c. (Chapters start from 1.)

Examples

--start=+56, --start=+00:56

Seeks to the start time + 56 seconds.

--start=-56, --start=-00:56

Seeks to the end time - 56 seconds.

--start=01:10:00

Seeks to 1 hour 10 min.

--start=50%

Seeks to the middle of the file.

--start=30 --end=40

Seeks to 30 seconds, plays 10 seconds, and exits.

--start=-3:20 --length=10

Seeks to 3 minutes and 20 seconds before the end of the file, plays 10 seconds, and
exits.

--start='#2' --end='#4'

Plays chapters 2 and 3, and exits.

--end=<time>

Stop at given absolute time. Use --length if the time should be relative to --start. See
--start for valid option values and examples.

--length=<relative time>

Stop after a given time relative to the start time. See --start for valid option values and examples.

--speed=<0.01-100>

Slow down or speed up playback by the factor given as parameter.

If --audio-pitch-correction (on by default) is used, playing with a speed higher than normal
automatically inserts the scaletempo audio filter.

--loop=<N|inf|force|no>

Loops playback N times. A value of 1 plays it one time (default), 2 two times, etc. inf means
forever. no is the same as 1 and disables looping. If several files are specified on command line, the
entire playlist is looped.

The force mode is like inf, but does not skip playlist entries which have been marked as failing.
This means the player might waste CPU time trying to loop a file that doesn't exist. But it might be
useful for playing webradios under very bad network conditions.

--pause

Start the player in paused state.

--shuffle

Play files in random order.

--chapter=<start[-end]>

Specify which chapter to start playing at. Optionally specify which chapter to end playing at. Also see
--start.

--playlist-pos=<no|index>

Set which file on the internal playlist to start playback with. The index is an integer, with 0 meaning
the first file. The value no means that the selection of the entry to play is left to the playback resume
mechanism (default). If an entry with the given index doesn't exist, the behavior is unspecified and
might change in future mpv versions. The same applies if the playlist contains further playlists (don't
expect any reasonable behavior). Passing a playlist file to mpv should work with this option, though.
E.g. mpv playlist.m3u --playlist-pos=123 will work as expected, as long as
playlist.m3u does not link to further playlists.

--playlist=<filename>

Play files according to a playlist file (Supports some common formats. If no format is detected, it will
be treated as list of files, separated by newline characters. Note that XML playlist formats are not
supported.)

You can play playlists directly and without this option, however, this option disables any security
mechanisms that might be in place. You may also need this option to load plaintext files as playlist.

Warning

The way mpv uses playlist files via --playlist is not safe against maliciously constructed
files. Such files may trigger harmful actions. This has been the case for all mpv and MPlayer
versions, but unfortunately this fact was not well documented earlier, and some people have
even misguidedly recommended use of --playlist with untrusted sources. Do NOT use
--playlist with random internet sources or files you do not trust!

Playlist can contain entries using other protocols, such as local files, or (most severely),
special protocols like avdevice://, which are inherently unsafe.

--chapter-merge-threshold=<number>

Threshold for merging almost consecutive ordered chapter parts in milliseconds (default: 100). Some
Matroska files with ordered chapters have inaccurate chapter end timestamps, causing a small gap
between the end of one chapter and the start of the next one when they should match. If the end of
one playback part is less than the given threshold away from the start of the next one then keep
playing video normally over the chapter change instead of doing a seek.

--chapter-seek-threshold=<seconds>

Distance in seconds from the beginning of a chapter within which a backward chapter seek will go to
the previous chapter (default: 5.0). Past this threshold, a backward chapter seek will go to the
beginning of the current chapter instead. A negative value means always go back to the previous
chapter.

--hr-seek=<no|absolute|yes>

Select when to use precise seeks that are not limited to keyframes. Such seeks require decoding
video from the previous keyframe up to the target position and so can take some time depending on
decoding performance. For some video formats, precise seeks are disabled. This option selects the
default choice to use for seeks; it is possible to explicitly override that default in the definition of key
bindings and in slave mode commands.

no: Never use precise seeks.

absolute: Use precise seeks if the seek is to an absolute position in the file, such as a
chapter seek, but not for relative seeks like the default behavior of arrow keys
(default).

yes: Use precise seeks whenever possible.

always: Same as yes (for compatibility).

--hr-seek-demuxer-offset=<seconds>

This option exists to work around failures to do precise seeks (as in --hr-seek) caused by bugs or
limitations in the demuxers for some file formats. Some demuxers fail to seek to a keyframe before
the given target position, going to a later position instead. The value of this option is subtracted from
the time stamp given to the demuxer. Thus, if you set this option to 1.5 and try to do a precise seek to
60 seconds, the demuxer is told to seek to time 58.5, which hopefully reduces the chance that it
erroneously goes to some time later than 60 seconds. The downside of setting this option is that
precise seeks become slower, as video between the earlier demuxer position and the real target may
be unnecessarily decoded.

--hr-seek-framedrop=<yes|no>

Allow the video decoder to drop frames during seek, if these frames are before the seek target. If this
is enabled, precise seeking can be faster, but if you're using video filters which modify timestamps or
add new frames, it can lead to precise seeking skipping the target frame. This e.g. can break frame
backstepping when deinterlacing is enabled.

Default: yes

--index=<mode>

Controls how to seek in files. Note that if the index is missing from a file, it will be built on the fly by
default, so you don't need to change this. But it might help with some broken files.

default: use an index if the file has one, or build it if missing

recreate: don't read or use the file's index

Note

This option only works if the underlying media supports seeking (i.e. not with stdin, pipe, etc).

--load-unsafe-playlists

Load URLs from playlists which are considered unsafe (default: no). This includes special protocols
and anything that doesn't refer to normal files. Local files and HTTP links on the other hand are
always considered safe.

Note that --playlist always loads all entries, so you use that instead if you really have the need
for this functionality.

--loop-file=<N|inf|no>

Loop a single file N times. inf means forever, no means normal playback. For compatibility,
--loop-file and --loop-file=yes are also accepted, and are the same as
--loop-file=inf.

The difference to --loop is that this doesn't loop the playlist, just the file itself. If the playlist contains
only a single file, the difference between the two option is that this option performs a seek on loop,
instead of reloading the file.

--ab-loop-a=<time>, --ab-loop-b=<time>

Set loop points. If playback passes the b timestamp, it will seek to the a timestamp. Seeking past
the b point doesn't loop (this is intentional). The loop-points can be adjusted at runtime with the
corresponding properties. See also ab_loop command.

--ordered-chapters, --no-ordered-chapters

Enabled by default. Disable support for Matroska ordered chapters. mpv will not load or search for
video segments from other files, and will also ignore any chapter order specified for the main file.

--ordered-chapters-files=<playlist-file>

Loads the given file as playlist, and tries to use the files contained in it as reference files when
opening a Matroska file that uses ordered chapters. This overrides the normal mechanism for loading
referenced files by scanning the same directory the main file is located in.

Useful for loading ordered chapter files that are not located on the local filesystem, or if the
referenced files are in different directories.

Note: a playlist can be as simple as a text file containing filenames separated by newlines.

--chapters-file=<filename>

Load chapters from this file, instead of using the chapter metadata found in the main file.

--sstep=<sec>

Skip <sec> seconds after every frame.

Note

Without --hr-seek, skipping will snap to keyframes.

--stop-playback-on-init-failure=<yes|no>

Stop playback if either audio or video fails to initialize. Currently, the default behavior is no for the
command line player, but yes for libmpv. With no, playback will continue in video-only or audio-only
mode if one of them fails. This doesn't affect playback of audio-only or video-only files.

Program Behavior
--help

Show short summary of options.

-v

Increment verbosity level, one level for each -v found on the command line.

--version, -V

Print version string and exit.

--no-config

Do not load default configuration files. This prevents loading of both the user-level and system-wide
mpv.conf and input.conf files. Other configuration files are blocked as well, such as resume
playback files.

Note

Files explicitly requested by command line options, like --include or
--use-filedir-conf, will still be loaded.

Also see --config-dir.

--list-options

Prints all available options.

--list-properties

Print a list of the available properties.

--list-protocols

Print a list of the supported protocols.

--log-file=<path>

Opens the given path for writing, and print log messages to it. Existing files will be truncated. The log
level always corresponds to -v, regardless of terminal verbosity levels.

--config-dir=<path>

Force a different configuration directory. If this is set, the given directory is used to load configuration
files, and all other configuration directories are ignored. This means the global mpv configuration
directory as well as per-user directories are ignored, and overrides through environment variables
(MPV_HOME) are also ignored.

Note that the --no-config option takes precedence over this option.

--save-position-on-quit

Always save the current playback position on quit. When this file is played again later, the player will
seek to the old playback position on start. This does not happen if playback of a file is stopped in any
other way than quitting. For example, going to the next file in the playlist will not save the position,
and start playback at beginning the next time the file is played.

This behavior is disabled by default, but is always available when quitting the player with Shift+Q.

--dump-stats=<filename>

Write certain statistics to the given file. The file is truncated on opening. The file will contain raw
samples, each with a timestamp. To make this file into a readable, the script
TOOLS/stats-conv.py can be used (which currently displays it as a graph).

This option is useful for debugging only.

--idle=<no|yes|once>

Makes mpv wait idly instead of quitting when there is no file to play. Mostly useful in slave mode,
where mpv can be controlled through input commands.

once will only idle at start and let the player close once the first playlist has finished playing back.

--include=<configuration-file>

Specify configuration file to be parsed after the default ones.

--load-scripts=<yes|no>

If set to no, don't auto-load scripts from the scripts configuration subdirectory (usually
~/.config/mpv/scripts/). (Default: yes)

--script=<filename>

Load a Lua script. You can load multiple scripts by separating them with commas (,).

--script-opts=key1=value1,key2=value2,...

Set options for scripts. A script can query an option by key. If an option is used and what semantics
the option value has depends entirely on the loaded scripts. Values not claimed by any scripts are
ignored.

--merge-files

Pretend that all files passed to mpv are concatenated into a single, big file. This uses timeline/EDL
support internally. Note that this won't work for ordered chapter files.

--no-resume-playback

Do not restore playback position from the watch_later configuration subdirectory (usually
~/.config/mpv/watch_later/). See quit_watch_later input command.

--profile=<profile1,profile2,...>

Use the given profile(s), --profile=help displays a list of the defined profiles.

--reset-on-next-file=<all|option1,option2,...>

Normally, mpv will try to keep all settings when playing the next file on the playlist, even if they were
changed by the user during playback. (This behavior is the opposite of MPlayer's, which tries to reset
all settings when starting next file.)

Default: Do not reset anything.

This can be changed with this option. It accepts a list of options, and mpv will reset the value of these
options on playback start to the initial value. The initial value is either the default value, or as set by
the config file or command line.

In some cases, this might not work as expected. For example, --volume will only be reset if it is
explicitly set in the config file or the command line.

The special name all resets as many options as possible.

Examples

• --reset-on-next-file=pause Reset pause mode when switching to the next file.

• --reset-on-next-file=fullscreen,speed Reset fullscreen and playback speed
settings if they were changed during playback.

• --reset-on-next-file=all Try to reset all settings that were changed during
playback.

--write-filename-in-watch-later-config

Prepend the watch later config files with the name of the file they refer to. This is simply written as
comment on the top of the file.

Warning

This option may expose privacy-sensitive information and is thus disabled by default.

--ignore-path-in-watch-later-config

Ignore path (i.e. use filename only) when using watch later feature.

--show-profile=<profile>

Show the description and content of a profile.

--use-filedir-conf

Look for a file-specific configuration file in the same directory as the file that is being played. See
File-specific Configuration Files.

Warning

May be dangerous if playing from untrusted media.

--ytdl, --no-ytdl

Enable the youtube-dl hook-script. It will look at the input URL, and will play the video located on the
website. This works with many streaming sites, not just the one that the script is named after. This
requires a recent version of youtube-dl to be installed on the system. (Enabled by default, except
when the client API / libmpv is used.)

If the script can't do anything with an URL, it will do nothing.

(Note: this is the replacement for the now removed libquvi support.)

--ytdl-format=<best|worst|mp4|webm|...>

Video format/quality that is directly passed to youtube-dl. The possible values are specific to the
website and the video, for a given url the available formats can be found with the command
youtube-dl --list-formats URL. See youtube-dl's documentation for available aliases. To use
experimental DASH support for youtube, use bestvideo+bestaudio. (Default: best)

--ytdl-raw-options=<key>=<value>[,<key>=<value>[,...]]

Pass arbitrary options to youtube-dl. Parameter and argument should be passed as a key-value pair.
Options without argument must include =.

There is no sanity checking so it's possible to break things (i.e. passing invalid parameters to
youtube-dl).

Example

--ytdl-raw-options=username=user,password=pass
--ytdl-raw-options=force-ipv6=

Video
--vo=<driver1[:suboption1[=value]:...],driver2,...[,]>

Specify a priority list of video output drivers to be used. For interactive use, one would normally
specify a single one to use, but in configuration files, specifying a list of fallbacks may make sense.
See VIDEO OUTPUT DRIVERS for details and descriptions of available drivers.

--vd=<[+|-]family1:(*|decoder1),[+|-]family2:(*|decoder2),...[-]>

Specify a priority list of video decoders to be used, according to their family and name. See --ad for
further details. Both of these options use the same syntax and semantics; the only difference is that
they operate on different codec lists.

Note

See --vd=help for a full list of available decoders.

--vf=<filter1[=parameter1:parameter2:...],filter2,...>

Specify a list of video filters to apply to the video stream. See VIDEO FILTERS for details and
descriptions of the available filters. The option variants --vf-add, --vf-pre, --vf-del and
--vf-clr exist to modify a previously specified list, but you should not need these for typical use.

--no-video

Do not play video. With some demuxers this may not work. In those cases you can try --vo=null
instead.

mpv will try to download the audio only if media is streamed with youtube-dl, because it saves
bandwidth. This is done by setting the ytdl_format to "bestaudio/best" in the ytdl_hook.lua script.

--untimed

Do not sleep when outputting video frames. Useful for benchmarks when used with --no-audio.

--framedrop=<mode>

Skip displaying some frames to maintain A/V sync on slow systems, or playing high framerate video
on video outputs that have an upper framerate limit.

The argument selects the drop methods, and can be one of the following:

<no>

Disable any framedropping.

<vo>

Drop late frames on video output (default). This still decodes and filters all frames, but doesn't
render them on the VO. It tries to query the display FPS (X11 only, not correct on multi-monitor
systems), or assumes infinite display FPS if that fails. Drops are indicated in the terminal status
line as D: field. If the decoder is too slow, in theory all frames would have to be dropped
(because all frames are too late) - to avoid this, frame dropping stops if the effective framerate is
below 10 FPS.

<decoder>

Old, decoder-based framedrop mode. (This is the same as --framedrop=yes in mpv 0.5.x
and before.) This tells the decoder to skip frames (unless they are needed to decode future
frames). May help with slow systems, but can produce unwatchable choppy output, or even
freeze the display completely. Not recommended. The --vd-lavc-framedrop option controls
what frames to drop.

<decoder+vo>

Enable both modes. Not recommended.

Note

--vo=vdpau has its own code for the vo framedrop mode. Slight differences to other VOs
are possible.

--display-fps=<fps>

Set the maximum assumed display FPS used with --framedrop. By default a detected value is
used (X11 only, not correct on multi-monitor systems), or infinite display FPS if that fails. Infinite FPS
means only frames too late are dropped. If a correct FPS is provided, frames that are predicted to be
too late are dropped too.

--hwdec=<api>

Specify the hardware video decoding API that should be used if possible. Whether hardware
decoding is actually done depends on the video codec. If hardware decoding is not possible, mpv will
fall back on software decoding.

<api> can be one of the following:

no: always use software decoding (default)

auto: see below

vdpau: requires --vo=vdpau or --vo=opengl (Linux only)

vaapi: requires --vo=opengl or --vo=vaapi (Linux with Intel GPUs only)

vaapi-copy: copies video back into system RAM (Linux with Intel GPUs only)

vda: requires --vo=opengl (OS X only)

videotoolbox: requires --vo=opengl (newer OS X only)

dxva2-copy: copies video back to system RAM (Windows only)

rpi: requires --vo=rpi (Raspberry Pi only - default if available)

auto tries to automatically enable hardware decoding using the first available method. This still
depends what VO you are using. For example, if you are not using --vo=vdpau or --vo=opengl,
vdpau decoding will never be enabled. Also note that if the first found method doesn't actually work, it
will always fall back to software decoding, instead of trying the next method (might matter on some
Linux systems).

The vaapi-copy mode allows you to use vaapi with any VO. Because this copies the decoded
video back to system RAM, it's likely less efficient than the vaapi mode.

Note

When using this switch, hardware decoding is still only done for some codecs. See
--hwdec-codecs to enable hardware decoding for more codecs.

--hwdec-preload=<api>

This is useful for the opengl and opengl-cb VOs for creating the hardware decoding OpenGL
interop context, but without actually enabling hardware decoding itself (like --hwdec does).

If set to no (default), the --hwdec option is used.

For opengl, if set, do not create the interop context on demand, but when the VO is created.

For opengl-cb, if set, load the interop context as soon as the OpenGL context is created. Since
opengl-cb has no on-demand loading, this allows enabling hardware decoding at runtime at all,
without having to to temporarily set the hwdec option just during OpenGL context initialization with
mpv_opengl_cb_init_gl().

--panscan=<0.0-1.0>

Enables pan-and-scan functionality (cropping the sides of e.g. a 16:9 video to make it fit a 4:3 display
without black bands). The range controls how much of the image is cropped. May not work with all
video output drivers.

--video-aspect=<ratio>

Override video aspect ratio, in case aspect information is incorrect or missing in the file being played.
See also --no-video-aspect.

Two values have special meaning:

0: disable aspect ratio handling, pretend the video has square pixels

-1: use the video stream or container aspect (default)

But note that handling of these special values might change in the future.

Examples

• --video-aspect=4:3 or --video-aspect=1.3333

• --video-aspect=16:9 or --video-aspect=1.7777

--no-video-aspect

Ignore aspect ratio information from video file and assume the video has square pixels. See also
--video-aspect.

--video-aspect-method=<hybrid|bitstream|container>

This sets the default video aspect determination method (if the aspect is _not_ overridden by the user
with --video-aspect or others).

hybrid: Prefer the container aspect ratio. If the bitstream aspect switches mid-stream,
switch to preferring the bitstream aspect. This is the default behavior in mpv
and mplayer2.

container: Strictly prefer the container aspect ratio. This is apparently the default behavior
with VLC, at least with Matroska.

bitstream: Strictly prefer the bitstream aspect ratio, unless the bitstream aspect ratio is not
set. This is apparently the default behavior with XBMC/kodi, at least with
Matroska.

Normally you should not set this. Try the container and bitstream choices if you encounter
video that has the wrong aspect ratio in mpv, but seems to be correct in other players.

--video-unscaled

Disable scaling of the video. If the window is larger than the video, black bars are added. Otherwise,
the video is cropped. The video still can be influenced by the other --video-... options. (But not
all; for example --video-zoom does nothing if this option is enabled.)

The video and monitor aspects aspect will be ignored. Aspect correction would require to scale the
video in the X or Y direction, but this option disables scaling, disabling all aspect correction.

Note that the scaler algorithm may still be used, even if the video isn't scaled. For example, this can
influence chroma conversion.

This option is disabled if the --no-keepaspect option is used.

--video-pan-x=<value>, --video-pan-y=<value>

Moves the displayed video rectangle by the given value in the X or Y direction. The unit is in fractions
of the size of the scaled video (the full size, even if parts of the video are not visible due to panscan or
other options).

For example, displaying a 1280x720 video fullscreen on a 1680x1050 screen with
--video-pan-x=-0.1 would move the video 168 pixels to the left (making 128 pixels of the source
video invisible).

This option is disabled if the --no-keepaspect option is used.

--video-rotate=<0-360|no>

Rotate the video clockwise, in degrees. Currently supports 90° steps only. If no is given, the video is
never rotated, even if the file has rotation metadata. (The rotation value is added to the rotation
metadata, which means the value 0 would rotate the video according to the rotation metadata.)

--video-stereo-mode=<no|mode>

Set the stereo 3D output mode (default: mono). This is done by inserting the stereo3d conversion
filter.

The pseudo-mode no disables automatic conversion completely.

The mode mono is an alias to ml, which refers to the left frame in 2D. This is the default, which
means mpv will try to show 3D movies in 2D, instead of the mangled 3D image not intended for
consumption (such as showing the left and right frame side by side, etc.).

Use --video-stereo-mode=help to list all available modes. Check with the stereo3d filter
documentation to see what the names mean. Note that some names refer to modes not supported by
stereo3d - these modes can appear in files, but can't be handled properly by mpv.

--video-zoom=<value>

Adjust the video display scale factor by the given value. The unit is in fractions of the (scaled) window
video size.

For example, given a 1280x720 video shown in a 1280x720 window, --video-zoom=-0.1 would
make the video by 128 pixels smaller in X direction, and 72 pixels in Y direction.

This option is disabled if the --no-keepaspect option is used.

--video-align-x=<-1-1>, --video-align-y=<-1-1>

Moves the video rectangle within the black borders, which are usually added to pad the video to
screen if video and screen aspect ratios are different. --video-align-y=-1 would move the

video to the top of the screen (leaving a border only on the bottom), a value of 0 centers it (default),
and a value of 1 would put the video at the bottom of the screen.

If video and screen aspect match perfectly, these options do nothing.

This option is disabled if the --no-keepaspect option is used.

--correct-pts, --no-correct-pts

--no-correct-pts switches mpv to a mode where video timing is determined using a fixed
framerate value (either using the --fps option, or using file information). Sometimes, files with very
broken timestamps can be played somewhat well in this mode. Note that video filters, subtitle
rendering and audio synchronization can be completely broken in this mode.

--fps=<float>

Override video framerate. Useful if the original value is wrong or missing.

Note

Works in --no-correct-pts mode only.

--deinterlace=<yes|no|auto>

Enable or disable interlacing (default: auto, which usually means no). Interlaced video shows ugly
comb-like artifacts, which are visible on fast movement. Enabling this typically inserts the yadif video
filter in order to deinterlace the video, or lets the video output apply deinterlacing if supported.

This behaves exactly like the deinterlace input property (usually mapped to Shift+D).

auto is a technicality. Strictly speaking, the default for this option is deinterlacing disabled, but the
auto case is needed if yadif was added to the filter chain manually with --vf. Then the core
shouldn't disable deinterlacing just because the --deinterlace was not set.

--field-dominance=<auto|top|bottom>

Set first field for interlaced content. Useful for deinterlacers that double the framerate:
--vf=yadif=field and --vo=vdpau:deint.

auto: (default) If the decoder does not export the appropriate information, it falls back
on top (top field first).

top: top field first

bottom: bottom field first

Note

Setting either top or bottom will flag all frames as interlaced.

--frames=<number>

Play/convert only first <number> video frames, then quit.

--frames=0 loads the file, but immediately quits before initializing playback. (Might be useful for
scripts which just want to determine some file properties.)

For audio-only playback, any value greater than 0 will quit playback immediately after initialization.
The value 0 works as with video.

--hwdec-codecs=<codec1,codec2,...|all>

Allow hardware decoding for a given list of codecs only. The special value all always allows all
codecs.

You can get the list of allowed codecs with mpv --vd=help. Remove the prefix, e.g. instead of
lavc:h264 use h264.

By default this is set to h264,vc1,wmv3,hevc. Note that the hardware acceleration special codecs
like h264_vdpau are not relevant anymore, and in fact have been removed from Libav in this form.

This is usually only needed with broken GPUs, where a codec is reported as supported, but decoding
causes more problems than it solves.

Example

mpv --hwdec=vdpau --vo=vdpau --hwdec-codecs=h264,mpeg2video

Enable vdpau decoding for h264 and mpeg2 only.

--vd-lavc-check-hw-profile=<yes|no>

Check hardware decoder profile (default: yes). If no is set, the highest profile of the hardware
decoder is unconditionally selected, and decoding is forced even if the profile of the video is higher
than that. The result is most likely broken decoding, but may also help if the detected or reported
profiles are somehow incorrect.

--vd-lavc-bitexact

Only use bit-exact algorithms in all decoding steps (for codec testing).

--vd-lavc-fast (MPEG-2, MPEG-4, and H.264 only)

Enable optimizations which do not comply with the format specification and potentially cause
problems, like simpler dequantization, simpler motion compensation, assuming use of the default
quantization matrix, assuming YUV 4:2:0 and skipping a few checks to detect damaged bitstreams.

--vd-lavc-o=<key>=<value>[,<key>=<value>[,...]]

Pass AVOptions to libavcodec decoder. Note, a patch to make the o= unneeded and pass all
unknown options through the AVOption system is welcome. A full list of AVOptions can be found in
the FFmpeg manual.

Some options which used to be direct options can be set with this mechanism, like bug, gray, idct,
ec, vismv, skip_top (was st), skip_bottom (was sb), debug.

Example

--vd--lavc-o=debug=pict

--vd-lavc-show-all=<yes|no>

Show even broken/corrupt frames (default: no). If this option is set to no, libavcodec won't output
frames that were either decoded before an initial keyframe was decoded, or frames that are
recognized as corrupted.

--vd-lavc-skiploopfilter=<skipvalue> (H.264 only)

Skips the loop filter (AKA deblocking) during H.264 decoding. Since the filtered frame is supposed to
be used as reference for decoding dependent frames, this has a worse effect on quality than not
doing deblocking on e.g. MPEG-2 video. But at least for high bitrate HDTV, this provides a big
speedup with little visible quality loss.

<skipvalue> can be one of the following:

none: Never skip.

default: Skip useless processing steps (e.g. 0 size packets in AVI).

nonref: Skip frames that are not referenced (i.e. not used for decoding other frames,
the error cannot "build up").

bidir: Skip B-Frames.

nonkey: Skip all frames except keyframes.

all: Skip all frames.

--vd-lavc-skipidct=<skipvalue> (MPEG-1/2 only)

Skips the IDCT step. This degrades quality a lot in almost all cases (see skiploopfilter for available
skip values).

--vd-lavc-skipframe=<skipvalue>

Skips decoding of frames completely. Big speedup, but jerky motion and sometimes bad artifacts
(see skiploopfilter for available skip values).

--vd-lavc-framedrop=<skipvalue>

Set framedropping mode used with --framedrop (see skiploopfilter for available skip values).

--vd-lavc-threads=<N>

Number of threads to use for decoding. Whether threading is actually supported depends on codec
(default: 0). 0 means autodetect number of cores on the machine and use that, up to the maximum of
16. You can set more than 16 threads manually.

Audio
--audio-pitch-correction=<yes|no>

If this is enabled (default), playing with a speed different from normal automatically inserts the
scaletempo audio filter. For details, see audio filter section.

--audio-device=<name>

Use the given audio device. This consists of the audio output name, e.g. alsa, followed by /,
followed by the audio output specific device name.

You can list audio devices with --audio-device=help. This outputs the device name in quotes,
followed by a description. The device name is what you have to pass to the --audio-device
option.

The default value for this option is auto, which tries every audio output in preference order with the
default device.

Note that many AOs have a device sub-option, which overrides the device selection of this option
(but not the audio output selection). Likewise, forcing an AO with --ao will override the audio output
selection of --audio-device (but not the device selection).

Currently not implemented for most AOs.

--ao=<driver1[:suboption1[=value]:...],driver2,...[,]>

Specify a priority list of audio output drivers to be used. For interactive use one would normally
specify a single one to use, but in configuration files specifying a list of fallbacks may make sense.
See AUDIO OUTPUT DRIVERS for details and descriptions of available drivers.

--af=<filter1[=parameter1:parameter2:...],filter2,...>

Specify a list of audio filters to apply to the audio stream. See AUDIO FILTERS for details and
descriptions of the available filters. The option variants --af-add, --af-pre, --af-del and
--af-clr exist to modify a previously specified list, but you should not need these for typical use.

--audio-spdif=<codecs>

List of codecs for which compressed audio passthrough should be used. This works for both classic
S/PDIF and HDMI.

Possible codecs are ac3, dts, dts-hd. Multiple codecs can be specified by separating them with ,.
dts refers to low bitrate DTS core, while dts-hd refers to DTS MA (receiver and OS support
varies). You should only use either dts or dts-hd (if both are specified, and dts comes first, only
dts will be used).

In general, all codecs in the spdif family listed with --ad=help are supported in theory.

Warning

There is not much reason to use this. HDMI supports uncompressed multichannel PCM, and
mpv supports lossless DTS-HD decoding via FFmpeg's libdcadec wrapper.

--ad=<[+|-]family1:(*|decoder1),[+|-]family2:(*|decoder2),...[-]>

Specify a priority list of audio decoders to be used, according to their family and decoder name.
Entries like family:* prioritize all decoders of the given family. When determining which decoder to
use, the first decoder that matches the audio format is selected. If that is unavailable, the next
decoder is used. Finally, it tries all other decoders that are not explicitly selected or rejected by the
option.

- at the end of the list suppresses fallback on other available decoders not on the --ad list. + in
front of an entry forces the decoder. Both of these should not normally be used, because they break
normal decoder auto-selection!

- in front of an entry disables selection of the decoder.

Examples

--ad=lavc:mp3float

Prefer the FFmpeg/Libav mp3float decoder over all other MP3 decoders.

--ad=spdif:ac3,lavc:*

Always prefer spdif AC3 over FFmpeg/Libav over anything else.

--ad=help

List all available decoders.

Warning

Enabling compressed audio passthrough (AC3 and DTS via SPDIF/HDMI) with this option is
deprecated. Use --audio-spdif instead.

--volume=<value>

Set the startup volume. 0 means silence, 100 means no volume reduction or amplification. A value of
-1 (the default) will not change the volume. See also --softvol.

Note

This was changed after the mpv 0.9 release. Before that, 100 actually meant maximum
volume. At the same time, the volume scale was made cubic, so the old values won't match
up with the new ones anyway.

--audio-delay=<sec>

Audio delay in seconds (positive or negative float value). Positive values delay the audio, and
negative values delay the video.

--no-audio

Do not play sound.

--mute=<auto|yes|no>

Set startup audio mute status. auto (default) will not change the mute status. Also see --volume.

--softvol=<mode>

Control whether to use the volume controls of the audio output driver or the internal mpv volume filter.

no: prefer audio driver controls, use the volume filter only if absolutely needed

yes: always use the volume filter

auto: prefer the volume filter if the audio driver uses the system mixer (default)

The intention of auto is to avoid changing system mixer settings from within mpv with default
settings. mpv is a video player, not a mixer panel. On the other hand, mixer controls are enabled for
sound servers like PulseAudio, which provide per-application volume.

--audio-demuxer=<[+]name>

Use this audio demuxer type when using --audio-file. Use a '+' before the name to force it; this
will skip some checks. Give the demuxer name as printed by --audio-demuxer=help.

--ad-lavc-ac3drc=<level>

Select the Dynamic Range Compression level for AC-3 audio streams. <level> is a float value
ranging from 0 to 1, where 0 means no compression (which is the default) and 1 means full
compression (make loud passages more silent and vice versa). Values up to 6 are also accepted, but
are purely experimental. This option only shows an effect if the AC-3 stream contains the required
range compression information.

The standard mandates that DRC is enabled by default, but mpv (and some other players) ignore this
for the sake of better audio quality.

--ad-lavc-downmix=<yes|no>

Whether to request audio channel downmixing from the decoder (default: yes). Some decoders, like
AC-3, AAC and DTS, can remix audio on decoding. The requested number of output channels is set
with the --audio-channels option. Useful for playing surround audio on a stereo system.

--ad-lavc-threads=<0-16>

Number of threads to use for decoding. Whether threading is actually supported depends on codec.
As of this writing, it's supported for some lossless codecs only. 0 means autodetect number of cores
on the machine and use that, up to the maximum of 16 (default: 1).

--ad-lavc-o=<key>=<value>[,<key>=<value>[,...]]

Pass AVOptions to libavcodec decoder. Note, a patch to make the o= unneeded and pass all
unknown options through the AVOption system is welcome. A full list of AVOptions can be found in
the FFmpeg manual.

--ad-spdif-dtshd=<yes|no>, --dtshd, --no-dtshd

If DTS is passed through, use DTS-HD.

Warning

This and enabling passthrough via --ad are deprecated in favor of using
--audio-spdif=dts-hd.

--audio-channels=<number|layout>

Request a channel layout for audio output (default: auto). This will ask the AO to open a device with
the given channel layout. It's up to the AO to accept this layout, or to pick a fallback or to error out if
the requested layout is not supported.

The --audio-channels option either takes a channel number or an explicit channel layout.
Channel numbers refer to default layouts, e.g. 2 channels refer to stereo, 6 refers to 5.1.

See --audio-channels=help output for defined default layouts. This also lists speaker names,
which can be used to express arbitrary channel layouts (e.g. fl-fr-lfe is 2.1).

The default is --audio-channels=auto, which tries to play audio using the input file's channel
layout. (Or more precisely, the output of the audio filter chain.) (empty is an accepted obsolete alias
for auto.)

This will also request the channel layout from the decoder. If the decoder does not support the layout,
it will fall back to its native channel layout. (You can use --ad-lavc-downmix=no to make the
decoder always output its native layout.) Note that only some decoders support remixing audio. Some
that do include AC-3, AAC or DTS audio.

If the channel layout of the media file (i.e. the decoder) and the AO's channel layout don't match, mpv
will attempt to insert a conversion filter.

Warning

Using auto can cause issues when using audio over HDMI. The OS will typically report all
channel layouts that _can_ go over HDMI, even if the receiver does not support them. If a
receiver gets an unsupported channel layout, random things can happen, such as dropping
the additional channels, or adding noise.

--audio-display=<no|attachment>

Setting this option to attachment (default) will display image attachments (e.g. album cover art)
when playing audio files. It will display the first image found, and additional images are available as
video tracks.

Setting this option to no disables display of video entirely when playing audio files.

This option has no influence on files with normal video tracks.

--audio-file=<filename>

Play audio from an external file while viewing a video. Each use of this option will add a new audio
track. The details are similar to how --sub-file works.

--audio-format=<format>

Select the sample format used for output from the audio filter layer to the sound card. The values that
<format> can adopt are listed below in the description of the format audio filter.

--audio-samplerate=<Hz>

Select the output sample rate to be used (of course sound cards have limits on this). If the sample
frequency selected is different from that of the current media, the lavrresample audio filter will be
inserted into the audio filter layer to compensate for the difference.

--gapless-audio=<no|yes|weak>

Try to play consecutive audio files with no silence or disruption at the point of file change. Default:
weak.

no: Disable gapless audio.

yes: The audio device is opened using parameters chosen according to the first file
played and is then kept open for gapless playback. This means that if the first
file for example has a low sample rate, then the following files may get
resampled to the same low sample rate, resulting in reduced sound quality. If
you play files with different parameters, consider using options such as
--audio-samplerate and --audio-format to explicitly select what the
shared output format will be.

weak: Normally, the audio device is kept open (using the format it was first initialized
with). If the audio format the decoder output changes, the audio device is
closed and reopened. This means that you will normally get gapless audio with
files that were encoded using the same settings, but might not be gapless in
other cases. (Unlike with yes, you don't have to worry about corner cases like
the first file setting a very low quality output format, and ruining the playback of
higher quality files that follow.)

Note

This feature is implemented in a simple manner and relies on audio output device buffering to
continue playback while moving from one file to another. If playback of the new file starts
slowly, for example because it is played from a remote network location or because you have
specified cache settings that require time for the initial cache fill, then the buffered audio may
run out before playback of the new file can start.

--initial-audio-sync, --no-initial-audio-sync

When starting a video file or after events such as seeking, mpv will by default modify the audio
stream to make it start from the same timestamp as video, by either inserting silence at the start or
cutting away the first samples. Disabling this option makes the player behave like older mpv versions
did: video and audio are both started immediately even if their start timestamps differ, and then video
timing is gradually adjusted if necessary to reach correct synchronization later.

--softvol-max=<100.0-1000.0>

Set the maximum amplification level in percent (default: 130). A value of 130 will allow you to adjust
the volume up to about double the normal level.

--audio-file-auto=<no|exact|fuzzy|all>, --no-audio-file-auto

Load additional audio files matching the video filename. The parameter specifies how external audio
files are matched. exact is enabled by default.

no: Don't automatically load external audio files.

exact: Load the media filename with audio file extension (default).

fuzzy: Load all audio files containing media filename.

all: Load all audio files in the current directory.

--audio-client-name=<name>

The application name the player reports to the audio API. Can be useful if you want to force a
different audio profile (e.g. with PulseAudio), or to set your own application name when using libmpv.

--volume-restore-data=<string>

Used internally for use by playback resume (e.g. with quit_watch_later). Restoring value has to
be done carefully, because different AOs as well as softvol can have different value ranges, and we
don't want to restore volume if setting the volume changes it system wide. The normal options (like
--volume) would always set the volume. This option was added for restoring volume in a safer way
(by storing the method used to set the volume), and is not generally useful. Its semantics are
considered private to mpv.

Do not use.

--audio-buffer=<seconds>

Set the audio output minimum buffer. The audio device might actually create a larger buffer if it
pleases. If the device creates a smaller buffer, additional audio is buffered in an additional software
buffer.

Making this larger will make soft-volume and other filters react slower, introduce additional issues on
playback speed change, and block the player on audio format changes. A smaller buffer might lead to
audio dropouts.

This option should be used for testing only. If a non-default value helps significantly, the mpv
developers should be contacted.

Default: 0.2 (200 ms).

Subtitles
--no-sub

Do not select any subtitle when the file is loaded.

--sub-demuxer=<[+]name>

Force subtitle demuxer type for --sub-file. Give the demuxer name as printed by
--sub-demuxer=help.

--sub-delay=<sec>

Delays subtitles by <sec> seconds. Can be negative.

--sub-file=subtitlefile

Add a subtitle file to the list of external subtitles.

If you use --sub-file only once, this subtitle file is displayed by default.

If --sub-file is used multiple times, the subtitle to use can be switched at runtime by cycling
subtitle tracks. It's possible to show two subtitles at once: use --sid to select the first subtitle index,
and --secondary-sid to select the second index. (The index is printed on the terminal output after
the --sid= in the list of streams.)

--secondary-sid=<ID|auto|no>

Select a secondary subtitle stream. This is similar to --sid. If a secondary subtitle is selected, it will
be rendered as toptitle (i.e. on the top of the screen) alongside the normal subtitle, and provides a
way to render two subtitles at once.

There are some caveats associated with this feature. For example, bitmap subtitles will always be
rendered in their usual position, so selecting a bitmap subtitle as secondary subtitle will result in
overlapping subtitles. Secondary subtitles are never shown on the terminal if video is disabled.

Note

Styling and interpretation of any formatting tags is disabled for the secondary subtitle.
Internally, the same mechanism as --no-sub-ass is used to strip the styling.

Note

If the main subtitle stream contains formatting tags which display the subtitle at the top of the
screen, it will overlap with the secondary subtitle. To prevent this, you could use
--no-sub-ass to disable styling in the main subtitle stream.

--sub-scale=<0-100>

Factor for the text subtitle font size (default: 1).

Note

This affects ASS subtitles as well, and may lead to incorrect subtitle rendering. Use with care,
or use --sub-text-font-size instead.

--sub-scale-by-window=<yes|no>

Whether to scale subtitles with the window size (default: yes). If this is disabled, changing the window
size won't change the subtitle font size.

Like --sub-scale, this can break ASS subtitles.

--sub-scale-with-window=<yes|no>

Make the subtitle font size relative to the window, instead of the video. This is useful if you always
want the same font size, even if the video doesn't covert the window fully, e.g. because screen aspect
and window aspect mismatch (and the player adds black bars).

Default: yes.

This option is misnamed. The difference to the confusingly similar sounding option
--sub-scale-by-window is that --sub-scale-with-window still scales with the approximate
window size, while the other option disables this scaling.

Affects plain text subtitles only (or ASS if --ass-style-override is set high enough).

--ass-scale-with-window=<yes|no>

Like --sub-scale-with-window, but affects subtitles in ASS format only. Like --sub-scale, this
can break ASS subtitles.

Default: no.

--embeddedfonts, --no-embeddedfonts

Use fonts embedded in Matroska container files and ASS scripts (default: enabled). These fonts can
be used for SSA/ASS subtitle rendering.

--sub-pos=<0-100>

Specify the position of subtitles on the screen. The value is the vertical position of the subtitle in % of
the screen height.

Note

This affects ASS subtitles as well, and may lead to incorrect subtitle rendering. Use with care,
or use --sub-text-margin-y instead.

--sub-speed=<0.1-10.0>

Multiply the subtitle event timestamps with the given value. Can be used to fix the playback speed for
frame-based subtitle formats. Works for external text subtitles only.

Example

--sub-speed=25/23.976` plays frame based subtitles which have been loaded assuming a
framerate of 23.976 at 25 FPS.

--ass-force-style=<[Style.]Param=Value[,...]>

Override some style or script info parameters.

Examples

• --ass-force-style=FontName=Arial,Default.Bold=1

• --ass-force-style=PlayResY=768

Note

Using this option may lead to incorrect subtitle rendering.

--ass-hinting=<none|light|normal|native>

Set font hinting type. <type> can be:

none: no hinting (default)

light: FreeType autohinter, light mode

normal: FreeType autohinter, normal mode

native: font native hinter

Warning

Enabling hinting can lead to mispositioned text (in situations it's supposed to match up with
video background), or reduce the smoothness of animations with some badly authored ASS
scripts. It is recommended to not use this option, unless really needed.

--ass-line-spacing=<value>

Set line spacing value for SSA/ASS renderer.

--ass-shaper=<simple|complex>

Set the text layout engine used by libass.

simple: uses Fribidi only, fast, doesn't render some languages correctly

complex: uses HarfBuzz, slower, wider language support

complex is the default. If libass hasn't been compiled against HarfBuzz, libass silently reverts to
simple.

--ass-styles=<filename>

Load all SSA/ASS styles found in the specified file and use them for rendering text subtitles. The
syntax of the file is exactly like the [V4 Styles] / [V4+ Styles] section of SSA/ASS.

Note

Using this option may lead to incorrect subtitle rendering.

--ass-style-override=<yes|no|force>

Control whether user style overrides should be applied.

yes: Apply all the --ass-* style override options. Changing the default for any of
these options can lead to incorrect subtitle rendering (default).

signfs: like yes, but apply --sub-scale only to signs

no: Render subtitles as forced by subtitle scripts.

force: Try to force the font style as defined by the --sub-text-* options. Can
break rendering easily.

--ass-force-margins

Enables placing toptitles and subtitles in black borders when they are available, if the subtitles are in
the ASS format.

Default: no.

--sub-use-margins

Enables placing toptitles and subtitles in black borders when they are available, if the subtitles are in
a plain text format (or ASS if --ass-style-override is set high enough).

Default: yes.

Renamed from --ass-use-margins. To place ASS subtitles in the borders too (like the old option
did), also add --ass-force-margins.

--ass-vsfilter-aspect-compat=<yes|no>

Stretch SSA/ASS subtitles when playing anamorphic videos for compatibility with traditional VSFilter
behavior. This switch has no effect when the video is stored with square pixels.

The renderer historically most commonly used for the SSA/ASS subtitle formats, VSFilter, had
questionable behavior that resulted in subtitles being stretched too if the video was stored in
anamorphic format that required scaling for display. This behavior is usually undesirable and newer
VSFilter versions may behave differently. However, many existing scripts compensate for the
stretching by modifying things in the opposite direction. Thus, if such scripts are displayed "correctly",
they will not appear as intended. This switch enables emulation of the old VSFilter behavior
(undesirable but expected by many existing scripts).

Enabled by default.

--ass-vsfilter-blur-compat=<yes|no>

Scale \blur tags by video resolution instead of script resolution (enabled by default). This is bug in
VSFilter, which according to some, can't be fixed anymore in the name of compatibility.

Note that this uses the actual video resolution for calculating the offset scale factor, not what the
video filter chain or the video output use.

--ass-vsfilter-color-compat=<basic|full|force-601|no>

Mangle colors like (xy-)vsfilter do (default: basic). Historically, VSFilter was not color space aware.
This was no problem as long as the color space used for SD video (BT.601) was used. But when
everything switched to HD (BT.709), VSFilter was still converting RGB colors to BT.601, rendered

them into the video frame, and handled the frame to the video output, which would use BT.709 for
conversion to RGB. The result were mangled subtitle colors. Later on, bad hacks were added on top
of the ASS format to control how colors are to be mangled.

basic: Handle only BT.601->BT.709 mangling, if the subtitles seem to indicate that this
is required (default).

full: Handle the full YCbCr Matrix header with all video color spaces supported
by libass and mpv. This might lead to bad breakages in corner cases and is not
strictly needed for compatibility (hopefully), which is why this is not default.

force-601: Force BT.601->BT.709 mangling, regardless of subtitle headers or video color
space.

no: Disable color mangling completely. All colors are RGB.

Choosing anything other than no will make the subtitle color depend on the video color space, and
it's for example in theory not possible to reuse a subtitle script with another video file. The
--ass-style-override option doesn't affect how this option is interpreted.

--stretch-dvd-subs=<yes|no>

Stretch DVD subtitles when playing anamorphic videos for better looking fonts on badly mastered
DVDs. This switch has no effect when the video is stored with square pixels - which for DVD input
cannot be the case though.

Many studios tend to use bitmap fonts designed for square pixels when authoring DVDs, causing the
fonts to look stretched on playback on DVD players. This option fixes them, however at the price of
possibly misaligning some subtitles (e.g. sign translations).

Disabled by default.

--stretch-image-subs-to-screen=<yes|no>

Stretch DVD and other image subtitles to the screen, ignoring the video margins. This has a similar
effect as --sub-use-margins for text subtitles, except that the text itself will be stretched, not only
just repositioned. (At least in general it is unavoidable, as an image bitmap can in theory consist of a
single bitmap covering the whole screen, and the player won't know where exactly the text parts are
located.)

This option does not display subtitles correctly. Use with care.

Disabled by default.

--sub-ass, --no-sub-ass

Render ASS subtitles natively (enabled by default).

If --no-sub-ass is specified, all tags and style declarations are stripped and ignored on display.
The subtitle renderer uses the font style as specified by the --sub-text- options instead.

Note

Using --no-sub-ass may lead to incorrect or completely broken rendering of ASS/SSA
subtitles. It can sometimes be useful to forcibly override the styling of ASS subtitles, but
should be avoided in general.

Note

Try using --ass-style-override=force instead.

--sub-auto=<no|exact|fuzzy|all>, --no-sub-auto

Load additional subtitle files matching the video filename. The parameter specifies how external
subtitle files are matched. exact is enabled by default.

no: Don't automatically load external subtitle files.

exact: Load the media filename with subtitle file extension (default).

fuzzy: Load all subs containing media filename.

all: Load all subs in the current and --sub-paths directories.

--sub-codepage=<codepage>

If your system supports iconv(3), you can use this option to specify the subtitle codepage. By
default, uchardet will be used to guess the charset. If mpv is not compiled with uchardet, enca will be
used. If mpv is compiled with neither uchardet nor enca, UTF-8:UTF-8-BROKEN is the default,
which means it will try to use UTF-8, otherwise the UTF-8-BROKEN pseudo codepage (see below).

The default value for this option is auto, whose actual effect depends on whether ENCA is compiled.

Warning

If you force the charset, even subtitles that are known to be UTF-8 will be recoded, which is
perhaps not what you expect. Prefix codepages with utf8: if you want the codepage to be
used only if the input is not valid UTF-8.

Examples

• --sub-codepage=utf8:latin2 Use Latin 2 if input is not UTF-8.

• --sub-codepage=cp1250 Always force recoding to cp1250.

The pseudo codepage UTF-8-BROKEN is used internally. When it is the codepage, subtitles are
interpreted as UTF-8 with "Latin 1" as fallback for bytes which are not valid UTF-8 sequences. iconv
is never involved in this mode.

If the player was compiled with ENCA support, you can control it with the following syntax:

--sub-codepage=enca:<language>:<fallback codepage>

Language is specified using a two letter code to help ENCA detect the codepage automatically. If an
invalid language code is entered, mpv will complain and list valid languages. (Note however that this
list will only be printed when the conversion code is actually called, for example when loading an
external subtitle). The fallback codepage is used if autodetection fails. If no fallback is specified,
UTF-8-BROKEN is used.

Examples

• --sub-codepage=enca:pl:cp1250 guess the encoding, assuming the subtitles are
Polish, fall back on cp1250

• --sub-codepage=enca:pl guess the encoding for Polish, fall back on UTF-8.

• --sub-codepage=enca try universal detection, fall back on UTF-8.

If the player was compiled with libguess support, you can use it with:

--sub-codepage=guess:<language>:<fallback codepage>

libguess always needs a language. There is no universal detection mode. Use
--sub-codepage=guess:help to get a list of languages subject to the same caveat as with ENCA
above.

If the player was compiled with uchardet support you can use it with:

--sub-codepage=uchardet

This mode doesn't take language or fallback codepage.

--sub-fix-timing, --no-sub-fix-timing

By default, external text subtitles are preprocessed to remove minor gaps or overlaps between
subtitles (if the difference is smaller than 200 ms, the gap or overlap is removed). This does not affect
image subtitles, subtitles muxed with audio/video, or subtitles in the ASS format.

--sub-forced-only

Display only forced subtitles for the DVD subtitle stream selected by e.g. --slang.

--sub-fps=<rate>

Specify the framerate of the subtitle file (default: video fps).

Note

<rate> > video fps speeds the subtitles up for frame-based subtitle files and slows them
down for time-based ones.

Also see --sub-speed option.

--sub-gauss=<0.0-3.0>

Apply Gaussian blur to image subtitles (default: 0). This can help making pixelated DVD/Vobsubs
look nicer. A value other than 0 also switches to software subtitle scaling. Might be slow.

Note

Never applied to text subtitles.

--sub-gray

Convert image subtitles to grayscale. Can help making yellow DVD/Vobsubs look nicer.

Note

Never applied to text subtitles.

--sub-paths=<path1:path2:...>

Specify extra directories to search for subtitles matching the video. Multiple directories can be
separated by ":" (";" on Windows). Paths can be relative or absolute. Relative paths are interpreted
relative to video file directory.

Example

Assuming that /path/to/video/video.avi is played and
--sub-paths=sub:subtitles:/tmp/subs is specified, mpv searches for subtitle files in
these directories:

• /path/to/video/

• /path/to/video/sub/

• /path/to/video/subtitles/

• /tmp/subs/

• the sub configuration subdirectory (usually ~/.config/mpv/sub/)

--sub-visibility, --no-sub-visibility

Can be used to disable display of subtitles, but still select and decode them.

--sub-clear-on-seek

(Obscure, rarely useful.) Can be used to play broken mkv files with duplicate ReadOrder fields.
ReadOrder is the first field in a Matroska-style ASS subtitle packets. It should be unique, and libass
uses it for fast elimination of duplicates. This option disables caching of subtitles across seeks, so
after a seek libass can't eliminate subtitle packets with the same ReadOrder as earlier packets.

Window
--title=<string>

Set the window title. This is used for the video window, and if possible, also sets the audio stream
title.

Properties are expanded. (See Property Expansion.)

Warning

There is a danger of this causing significant CPU usage, depending on the properties used.
Changing the window title is often a slow operation, and if the title changes every frame,
playback can be ruined.

--screen=<default|0-32>

In multi-monitor configurations (i.e. a single desktop that spans across multiple displays), this option
tells mpv which screen to display the video on.

Note (X11)

This option does not work properly with all window managers. In these cases, you can try to
use --geometry to position the window explicitly. It's also possible that the window manager
provides native features to control which screens application windows should use.

See also --fs-screen.

--fullscreen, --fs

Fullscreen playback.

--fs-screen=<all|current|0-32>

In multi-monitor configurations (i.e. a single desktop that spans across multiple displays), this option
tells mpv which screen to go fullscreen to. If default is provided mpv will fallback on using the
behavior depending on what the user provided with the screen option.

Note (X11)

This option does works properly only with window managers which understand the EWMH
_NET_WM_FULLSCREEN_MONITORS hint.

Note (OS X)

all does not work on OS X and will behave like current.

See also --screen.

--fs-black-out-screens

OS X only. Black out other displays when going fullscreen.

--keep-open=<yes|no|always>

Do not terminate when playing or seeking beyond the end of the file, and there is not next file to be
played (and --loop is not used). Instead, pause the player. When trying to seek beyond end of the
file, the player will attempt to seek to the last frame.

The following arguments can be given:

no: If the current file ends, go to the next file or terminate. (Default.)

yes: Don't terminate if the current file is the last playlist entry. Equivalent to
--keep-open without arguments.

always: Like yes, but also applies to files before the last playlist entry. This means
playback will never automatically advance to the next file.

Note

This option is not respected when using --frames. Explicitly skipping to the next file if the
binding uses force will terminate playback as well.

Also, if errors or unusual circumstances happen, the player can quit anyway.

Since mpv 0.6.0, this doesn't pause if there is a next file in the playlist, or the playlist is looped.
Approximately, this will pause when the player would normally exit, but in practice there are corner
cases in which this is not the case (e.g. mpv --keep-open file.mkv /dev/null will play
file.mkv normally, then fail to open /dev/null, then exit). (In mpv 0.8.0, always was introduced,
which restores the old behavior.)

--force-window=<yes|no|immediate>

Create a video output window even if there is no video. This can be useful when pretending that mpv
is a GUI application. Currently, the window always has the size 640x480, and is subject to
--geometry, --autofit, and similar options.

Warning

The window is created only after initialization (to make sure default window placement still
works if the video size is different from the --force-window default window size). This can
be a problem if initialization doesn't work perfectly, such as when opening URLs with bad
network connection, or opening broken video files. The immediate mode can be used to
create the window always on program start, but this may cause other issues.

--ontop

Makes the player window stay on top of other windows.

--border, --no-border

Play video with window border and decorations. Since this is on by default, use --no-border to
disable the standard window decorations.

--on-all-workspaces

(X11 only) Show the video window on all virtual desktops.

--geometry=<[W[xH]][+-x+-y]>, --geometry=<x:y>

Adjust the initial window position or size. W and H set the window size in pixels. x and y set the
window position, measured in pixels from the top-left corner of the screen to the top-left corner of the
image being displayed. If a percentage sign (%) is given after the argument, it turns the value into a
percentage of the screen size in that direction. Positions are specified similar to the standard X11
--geometry option format, in which e.g. +10-50 means "place 10 pixels from the left border and 50
pixels from the lower border" and "--20+-10" means "place 20 pixels beyond the right and 10 pixels
beyond the top border".

If an external window is specified using the --wid option, this option is ignored.

The coordinates are relative to the screen given with --screen for the video output drivers that fully
support --screen.

Note

Generally only supported by GUI VOs. Ignored for encoding.

Note (X11)

This option does not work properly with all window managers.

Examples

50:40

Places the window at x=50, y=40.

50%:50%

Places the window in the middle of the screen.

100%:100%

Places the window at the bottom right corner of the screen.

50%

Sets the window width to half the screen width. Window height is set so that the window
has the video aspect ratio.

50%x50%

Forces the window width and height to half the screen width and height. Will show black
borders to compensate for the video aspect ration (with most VOs and without
--no-keepaspect).

50%+10+10

Sets the window to half the screen widths, and positions it 10 pixels below/left of the top
left corner of the screen.

See also --autofit and --autofit-larger for fitting the window into a given size without
changing aspect ratio.

--autofit=<[W[xH]]>

Set the initial window size to a maximum size specified by WxH, without changing the window's aspect
ratio. The size is measured in pixels, or if a number is followed by a percentage sign (%), in percents
of the screen size.

This option never changes the aspect ratio of the window. If the aspect ratio mismatches, the
window's size is reduced until it fits into the specified size.

Window position is not taken into account, nor is it modified by this option (the window manager still
may place the window differently depending on size). Use --geometry to change the window
position. Its effects are applied after this option.

See --geometry for details how this is handled with multi-monitor setups.

Use --autofit-larger instead if you just want to limit the maximum size of the window, rather
than always forcing a window size.

Use --geometry if you want to force both window width and height to a specific size.

Note

Generally only supported by GUI VOs. Ignored for encoding.

Examples

70%

Make the window width 70% of the screen size, keeping aspect ratio.

1000

Set the window width to 1000 pixels, keeping aspect ratio.

70%:60%

Make the window as large as possible, without being wider than 70% of the screen width,
or higher than 60% of the screen height.

--autofit-larger=<[W[xH]]>

This option behaves exactly like --autofit, except the window size is only changed if the window
would be larger than the specified size.

Example

90%x80%

If the video is larger than 90% of the screen width or 80% of the screen height, make the
window smaller until either its width is 90% of the screen, or its height is 80% of the
screen.

--autofit-smaller=<[W[xH]]>

This option behaves exactly like --autofit, except that it sets the minimum size of the window (just
as --autofit-larger sets the maximum).

Example

500x500

Make the window at least 500 pixels wide and 500 pixels high (depending on the video
aspect ratio, the width or height will be larger than 500 in order to keep the aspect ratio
the same).

--window-scale=<factor>

Resize the video window to a multiple (or fraction) of the video size. This option is applied before
--autofit and other options are applied (so they override this option).

For example, --window-scale=0.5 would show the window at half the video size.

--cursor-autohide=<number|no|always>

Make mouse cursor automatically hide after given number of milliseconds. no will disable cursor
autohide. always means the cursor will stay hidden.

--cursor-autohide-fs-only

If this option is given, the cursor is always visible in windowed mode. In fullscreen mode, the cursor is
shown or hidden according to --cursor-autohide.

--no-fixed-vo, --fixed-vo

--no-fixed-vo enforces closing and reopening the video window for multiple files (one
(un)initialization for each file).

--force-rgba-osd-rendering

Change how some video outputs render the OSD and text subtitles. This does not change
appearance of the subtitles and only has performance implications. For VOs which support native
ASS rendering (like vdpau, opengl, direct3d), this can be slightly faster or slower, depending on
GPU drivers and hardware. For other VOs, this just makes rendering slower.

--force-window-position

Forcefully move mpv's video output window to default location whenever there is a change in video
parameters, video stream or file. This used to be the default behavior. Currently only affects X11
VOs.

--heartbeat-cmd=<command>

Command that is executed every 30 seconds during playback via system() - i.e. using the shell. The
time between the commands can be customized with the --heartbeat-interval option. The
command is not run while playback is paused.

Note

mpv uses this command without any checking. It is your responsibility to ensure it does not
cause security problems (e.g. make sure to use full paths if "." is in your path like on
Windows). It also only works when playing video (i.e. not with --no-video but works with
-vo=null).

This can be "misused" to disable screensavers that do not support the proper X API (see also
--stop-screensaver). If you think this is too complicated, ask the author of the screensaver
program to support the proper X APIs. Note that the --stop-screensaver does not influence the
heartbeat code at all.

Example for xscreensaver

mpv --heartbeat-cmd="xscreensaver-command -deactivate" file

Example for GNOME screensaver

mpv --heartbeat-cmd="gnome-screensaver-command -p" file

--heartbeat-interval=<sec>

Time between --heartbeat-cmd invocations in seconds (default: 30).

Note

This does not affect the normal screensaver operation in any way.

--no-keepaspect, --keepaspect

--no-keepaspect will always stretch the video to window size, and will disable the window
manager hints that force the window aspect ratio. (Ignored in fullscreen mode.)

--no-keepaspect-window, --keepaspect-window

--keepaspect-window (the default) will lock the window size to the video aspect.
--no-keepaspect-window disables this behavior, and will instead add black bars if window aspect
and video aspect mismatch. Whether this actually works depends on the VO backend. (Ignored in
fullscreen mode.)

--monitoraspect=<ratio>

Set the aspect ratio of your monitor or TV screen. A value of 0 disables a previous setting (e.g. in the
config file). Overrides the --monitorpixelaspect setting if enabled.

See also --monitorpixelaspect and --video-aspect.

Examples

• --monitoraspect=4:3 or --monitoraspect=1.3333

• --monitoraspect=16:9 or --monitoraspect=1.7777

--monitorpixelaspect=<ratio>

Set the aspect of a single pixel of your monitor or TV screen (default: 1). A value of 1 means square
pixels (correct for (almost?) all LCDs). See also --monitoraspect and --video-aspect.

--stop-screensaver, --no-stop-screensaver

Turns off the screensaver (or screen blanker and similar mechanisms) at startup and turns it on again
on exit (default: yes). The screensaver is always re-enabled when the player is paused.

This is not supported on all video outputs or platforms. Sometimes it is implemented, but does not
work (happens often on GNOME). You might be able to to work this around using
--heartbeat-cmd instead.

--wid=<ID>

This tells mpv to attach to an existing window. If a VO is selected that supports this option, it will use
that window for video output. mpv will scale the video to the size of this window, and will add black
bars to compensate if the aspect ratio of the video is different.

On X11, the ID is interpreted as a Window on X11. Unlike MPlayer/mplayer2, mpv always creates its
own window, and sets the wid window as parent. The window will always be resized to cover the
parent window fully. The value 0 is interpreted specially, and mpv will draw directly on the root
window.

On win32, the ID is interpreted as HWND. Pass it as value cast to intptr_t. mpv will create its own
window, and set the wid window as parent, like with X11.

On OSX/Cocoa, the ID is interpreted as NSView*. Pass it as value cast to intptr_t. mpv will
creates its own sub-view. Because OSX does not support window embedding of foreign processes,
this works only with libmpv, and will crash when used from the command line.

--no-window-dragging

Don't move the window when clicking on it and moving the mouse pointer.

--x11-name

Set the window class name for X11-based video output methods.

--x11-netwm=<yes|no|auto>

(X11 only) Control the use of NetWM protocol features.

This may or may not help with broken window managers. This provides some functionality that was
implemented by the now removed --fstype option. Actually, it is not known to the developers to
which degree this option was needed, so feedback is welcome.

Specifically, yes will force use of NetWM fullscreen support, even if not advertised by the WM. This
can be useful for WMs that are broken on purpose, like XMonad. (XMonad supposedly doesn't
advertise fullscreen support, because Flash uses it. Apparently, applications which want to use
fullscreen anyway are supposed to either ignore the NetWM support hints, or provide a workaround.
Shame on XMonad for deliberately breaking X protocols (as if X isn't bad enough already).

By default, NetWM support is autodetected (auto).

This option might be removed in the future.

Disc Devices
--cdrom-device=<path>

Specify the CD-ROM device (default: /dev/cdrom).

--dvd-device=<path>

Specify the DVD device or .iso filename (default: /dev/dvd). You can also specify a directory that
contains files previously copied directly from a DVD (with e.g. vobcopy).

Example

mpv dvd:// --dvd-device=/path/to/dvd/

--bluray-device=<path>

(Blu-ray only) Specify the Blu-ray disc location. Must be a directory with Blu-ray structure.

Example

mpv bd:// --bluray-device=/path/to/bd/

--bluray-angle=<ID>

Some Blu-ray discs contain scenes that can be viewed from multiple angles. This option tells mpv
which angle to use (default: 1).

--cdda-...

These options can be used to tune the CD Audio reading feature of mpv.

--cdda-speed=<value>

Set CD spin speed.

--cdda-paranoia=<0-2>

Set paranoia level. Values other than 0 seem to break playback of anything but the first track.

0: disable checking (default)

1: overlap checking only

2: full data correction and verification

--cdda-sector-size=<value>

Set atomic read size.

--cdda-overlap=<value>

Force minimum overlap search during verification to <value> sectors.

--cdda-toc-bias

Assume that the beginning offset of track 1 as reported in the TOC will be addressed as LBA 0. Some
discs need this for getting track boundaries correctly.

--cdda-toc-offset=<value>

Add <value> sectors to the values reported when addressing tracks. May be negative.

--cdda-skip=<yes|no>

(Never) accept imperfect data reconstruction.

--cdda-cdtext=<yes|no>

Print CD text. This is disabled by default, because it ruins performance with CD-ROM drives for
unknown reasons.

--dvd-speed=<speed>

Try to limit DVD speed (default: 0, no change). DVD base speed is 1385 kB/s, so an 8x drive can
read at speeds up to 11080 kB/s. Slower speeds make the drive more quiet. For watching DVDs,
2700 kB/s should be quiet and fast enough. mpv resets the speed to the drive default value on close.
Values of at least 100 mean speed in kB/s. Values less than 100 mean multiples of 1385 kB/s, i.e.
--dvd-speed=8 selects 11080 kB/s.

Note

You need write access to the DVD device to change the speed.

--dvd-angle=<ID>

Some DVDs contain scenes that can be viewed from multiple angles. This option tells mpv which
angle to use (default: 1).

Equalizer
--brightness=<-100-100>

Adjust the brightness of the video signal (default: 0). Not supported by all video output drivers.

--contrast=<-100-100>

Adjust the contrast of the video signal (default: 0). Not supported by all video output drivers.

--saturation=<-100-100>

Adjust the saturation of the video signal (default: 0). You can get grayscale output with this option.
Not supported by all video output drivers.

--gamma=<-100-100>

Adjust the gamma of the video signal (default: 0). Not supported by all video output drivers.

--hue=<-100-100>

Adjust the hue of the video signal (default: 0). You can get a colored negative of the image with this
option. Not supported by all video output drivers.

Demuxer
--demuxer=<[+]name>

Force demuxer type. Use a '+' before the name to force it; this will skip some checks. Give the
demuxer name as printed by --demuxer=help.

--demuxer-lavf-analyzeduration=<value>

Maximum length in seconds to analyze the stream properties.

--demuxer-lavf-probescore=<1-100>

Minimum required libavformat probe score. Lower values will require less data to be loaded (makes
streams start faster), but makes file format detection less reliable. Can be used to force auto-detected
libavformat demuxers, even if libavformat considers the detection not reliable enough. (Default: 26.)

--demuxer-lavf-allow-mimetype=<yes|no>

Allow deriving the format from the HTTP MIME type (default: yes). Set this to no in case playing
things from HTTP mysteriously fails, even though the same files work from local disk.

This is default in order to reduce latency when opening HTTP streams.

--demuxer-lavf-format=<name>

Force a specific libavformat demuxer.

--demuxer-lavf-hacks=<yes|no>

By default, some formats will be handled differently from other formats by explicitly checking for them.
Most of these compensate for weird or imperfect behavior from libavformat demuxers. Passing no
disables these. For debugging and testing only.

--demuxer-lavf-genpts-mode=<no|lavf>

Mode for deriving missing packet PTS values from packet DTS. lavf enables libavformat's genpts
option. no disables it. This used to be enabled by default, but then it was deemed as not needed
anymore. Enabling this might help with timestamp problems, or make them worse.

--demuxer-lavf-o=<key>=<value>[,<key>=<value>[,...]]

Pass AVOptions to libavformat demuxer.

Note, a patch to make the o= unneeded and pass all unknown options through the AVOption system
is welcome. A full list of AVOptions can be found in the FFmpeg manual. Note that some options may
conflict with mpv options.

Example

--demuxer-lavf-o=fflags=+ignidx

--demuxer-lavf-probesize=<value>

Maximum amount of data to probe during the detection phase. In the case of MPEG-TS this value
identifies the maximum number of TS packets to scan.

--demuxer-lavf-buffersize=<value>

Size of the stream read buffer allocated for libavformat in bytes (default: 32768). Lowering the size
could lower latency. Note that libavformat might reallocate the buffer internally, or not fully use all of it.

--demuxer-lavf-cryptokey=<hexstring>

Encryption key the demuxer should use. This is the raw binary data of the key converted to a
hexadecimal string.

--demuxer-mkv-subtitle-preroll, --mkv-subtitle-preroll

Try harder to show embedded soft subtitles when seeking somewhere. Normally, it can happen that
the subtitle at the seek target is not shown due to how some container file formats are designed. The
subtitles appear only if seeking before or exactly to the position a subtitle first appears. To make this
worse, subtitles are often timed to appear a very small amount before the associated video frame, so
that seeking to the video frame typically does not demux the subtitle at that position.

Enabling this option makes the demuxer start reading data a bit before the seek target, so that
subtitles appear correctly. Note that this makes seeking slower, and is not guaranteed to always
work. It only works if the subtitle is close enough to the seek target.

Works with the internal Matroska demuxer only. Always enabled for absolute and hr-seeks, and this
option changes behavior with relative or imprecise seeks only.

You can use the --demuxer-mkv-subtitle-preroll-secs option to specify how much data
the demuxer should pre-read at most in order to find subtitle packets that may overlap. Setting this to
0 will effectively disable this preroll mechanism. Setting a very large value can make seeking very
slow, and an extremely large value would completely reread the entire file from start to seek target on
every seek - seeking can become slower towards the end of the file. The details are messy, and the
value is actually rounded down to the cluster with the previous video keyframe.

Some files, especially files muxed with newer mkvmerge versions, have information embedded that
can be used to determine what subtitle packets overlap with a seek target. In these cases, mpv will
reduce the amount of data read to a minimum. (Although it will still read all data between the cluster
that contains the first wanted subtitle packet, and the seek target.)

See also --hr-seek-demuxer-offset option. This option can achieve a similar effect, but only if
hr-seek is active. It works with any demuxer, but makes seeking much slower, as it has to decode
audio and video data instead of just skipping over it.

--mkv-subtitle-preroll is a deprecated alias.

--demuxer-mkv-subtitle-preroll-secs=<value>

See --demuxer-mkv-subtitle-preroll.

--demuxer-mkv-probe-video-duration=<yes|no|full>

When opening the file, seek to the end of it, and check what timestamp the last video packet has, and
report that as file duration. This is strictly for compatibility with Haali only. In this mode, it's possible
that opening will be slower (especially when playing over http), or that behavior with broken files is
much worse. So don't use this option.

The yes mode merely uses the index and reads a small number of blocks from the end of the file.
The full mode actually traverses the entire file and can make a reliable estimate even without an
index present (such as partial files).

--demuxer-mkv-fix-timestamps=<yes|no>

Fix rounded Matroska timestamps (disabled by default). Matroska usually stores timestamps rounded
to milliseconds. This means timestamps jitter by some amount around the intended timestamp. mpv
can correct the timestamps based on the framerate value stored in the file: the timestamp is rounded
to the next frame (according to the framerate), unless the new timestamp would deviate more than
1ms from the old one. This should undo the rounding done by the muxer.

(The allowed deviation can be less than 1ms if the file uses a non-standard timecode scale.)

--demuxer-rawaudio-channels=<value>

Number of channels (or channel layout) if --demuxer=rawaudio is used (default: stereo).

--demuxer-rawaudio-format=<value>

Sample format for --demuxer=rawaudio (default: s16le). Use
--demuxer-rawaudio-format=help to get a list of all formats.

--demuxer-rawaudio-rate=<value>

Sample rate for --demuxer=rawaudio (default: 44 kHz).

--demuxer-rawvideo-fps=<value>

Rate in frames per second for --demuxer=rawvideo (default: 25.0).

--demuxer-rawvideo-w=<value>, --demuxer-rawvideo-h=<value>

Image dimension in pixels for --demuxer=rawvideo.

Example

Play a raw YUV sample:

mpv sample-720x576.yuv --demuxer=rawvideo \
--demuxer-rawvideo-w=720 --demuxer-rawvideo-h=576

--demuxer-rawvideo-format=<value>

Color space (fourcc) in hex or string for --demuxer=rawvideo (default: YV12).

--demuxer-rawvideo-mp-format=<value>

Color space by internal video format for --demuxer=rawvideo. Use
--demuxer-rawvideo-mp-format=help for a list of possible formats.

--demuxer-rawvideo-codec=<value>

Set the video codec instead of selecting the rawvideo codec when using --demuxer=rawvideo.
This uses the same values as codec names in --vd (but it does not accept decoder names).

--demuxer-rawvideo-size=<value>

Frame size in bytes when using --demuxer=rawvideo.

--demuxer-max-packets=<packets>, --demuxer-max-bytes=<bytes>

This controls how much the demuxer is allowed to buffer ahead. The demuxer will normally try to read
ahead as much as necessary, or as much is requested with --demuxer-readahead-secs. The
--demuxer-max-... options can be used to restrict the maximum readahead. This limits excessive
readahead in case of broken files or desynced playback. The demuxer will stop reading additional
packets as soon as one of the limits is reached. (The limits still can be slightly overstepped due to
technical reasons.)

Set these limits highher if you get a packet queue overflow warning, and you think normal playback
would be possible with a larger packet queue.

See --list-options for defaults and value range.

--demuxer-thread=<yes|no>

Run the demuxer in a separate thread, and let it prefetch a certain amount of packets (default: yes).
Having this enabled may lead to smoother playback, but on the other hand can add delays to seeking
or track switching.

--demuxer-readahead-secs=<seconds>

If --demuxer-thread is enabled, this controls how much the demuxer should buffer ahead in
seconds (default: 1). As long as no packet has a timestamp difference higher than the readahead
amount relative to the last packet returned to the decoder, the demuxer keeps reading.

Note that the --cache-secs option will override this value if a cache is enabled, and the value is
larger.

(This value tends to be fuzzy, because many file formats don't store linear timestamps.)

--force-seekable=<yes|no>

If the player thinks that the media is not seekable (e.g. playing from a pipe, or it's a http stream with a
server that doesn't support range requests), seeking will be disabled. This option can forcibly enable
it. For seeks within the cache, there's a good chance of success.

Input
--native-keyrepeat

Use system settings for keyrepeat delay and rate, instead of --input-ar-delay and
--input-ar-rate. (Whether this applies depends on the VO backend and how it handles keyboard
input. Does not apply to terminal input.)

--input-ar-delay

Delay in milliseconds before we start to autorepeat a key (0 to disable).

--input-ar-rate

Number of key presses to generate per second on autorepeat.

--input-conf=<filename>

Specify input configuration file other than the default location in the mpv configuration directory
(usually ~/.config/mpv/input.conf).

--no-input-default-bindings

Disable mpv default (built-in) key bindings.

--input-cmdlist

Prints all commands that can be bound to keys.

--input-doubleclick-time=<milliseconds>

Time in milliseconds to recognize two consecutive button presses as a double-click (default: 300).

--input-keylist

Prints all keys that can be bound to commands.

--input-key-fifo-size=<2-65000>

Specify the size of the FIFO that buffers key events (default: 7). If it is too small some events may be
lost. The main disadvantage of setting it to a very large value is that if you hold down a key triggering
some particularly slow command then the player may be unresponsive while it processes all the
queued commands.

--input-test

Input test mode. Instead of executing commands on key presses, mpv will show the keys and the
bound commands on the OSD. Has to be used with a dummy video, and the normal ways to quit the

player will not work (key bindings that normally quit will be shown on OSD only, just like any other
binding). See INPUT.CONF.

--input-file=<filename>

Read commands from the given file. Mostly useful with a FIFO. Since mpv 0.7.0 also understands
JSON commands (see JSON IPC), but you can't get replies or events. Use
--input-unix-socket for something bi-directional. On MS Windows, JSON commands are not
available.

This can also specify a direct file descriptor with fd://N (UNIX only). In this case, JSON replies will
be written if the FD is writable.

Note

When the given file is a FIFO mpv opens both ends, so you can do several echo "seek 10" >
mp_pipe and the pipe will stay valid.

--input-terminal, --no-input-terminal

--no-input-terminal prevents the player from reading key events from standard input. Useful
when reading data from standard input. This is automatically enabled when - is found on the
command line. There are situations where you have to set it manually, e.g. if you open /dev/stdin
(or the equivalent on your system), use stdin in a playlist or intend to read from stdin later on via the
loadfile or loadlist slave commands.

--input-unix-socket=<filename>

Enable the IPC support and create the listening socket at the given path.

See JSON IPC for details.

Not available on MS Windows.

--input-appleremote=<yes|no>

(OS X only) Enable/disable Apple Remote support. Enabled by default (except for libmpv).

--input-cursor, --no-input-cursor

Permit mpv to receive pointer events reported by the video output driver. Necessary to use the OSC,
or to select the buttons in DVD menus. Support depends on the VO in use.

--input-media-keys=<yes|no>

(OS X only) Enable/disable media keys support. Enabled by default (except for libmpv).

--input-right-alt-gr, --no-input-right-alt-gr

(Cocoa and Windows only) Use the right Alt key as Alt Gr to produce special characters. If disabled,
count the right Alt as an Alt modifier key. Enabled by default.

--input-vo-keyboard=<yes|no>

Disable all keyboard input on for VOs which can't participate in proper keyboard input dispatching.
May not affect all VOs. Generally useful for embedding only.

On X11, a sub-window with input enabled grabs all keyboard input as long as it is 1. a child of a
focused window, and 2. the mouse is inside of the sub-window. The can steal away all keyboard input
from the application embedding the mpv window, and on the other hand, the mpv window will receive
no input if the mouse is outside of the mpv window, even though mpv has focus. Modern toolkits work
around this weird X11 behavior, but naively embedding foreign windows breaks it.

The only way to handle this reasonably is using the XEmbed protocol, which was designed to solve
these problems. GTK provides GtkSocket, which supports XEmbed. Qt doesn't seem to provide
anything working in newer versions.

If the embedder supports XEmbed, input should work with default settings and with this option
disabled. Note that input-default-bindings is disabled by default in libmpv as well - it should
be enabled if you want the mpv default key bindings.

(This option was renamed from --input-x11-keyboard.)

--input-app-events=<yes|no>

(OS X only) Enable/disable application wide keyboard events so that keyboard shortcuts can be
processed without a window. Enabled by default (except for libmpv).

OSD
--osc, --no-osc

Whether to load the on-screen-controller (default: yes).

--no-osd-bar, --osd-bar

Disable display of the OSD bar. This will make some things (like seeking) use OSD text messages
instead of the bar.

You can configure this on a per-command basis in input.conf using osd- prefixes, see
Input command prefixes. If you want to disable the OSD completely, use --osd-level=0.

--osd-duration=<time>

Set the duration of the OSD messages in ms (default: 1000).

--osd-font=<pattern>, --sub-text-font=<pattern>

Specify font to use for OSD and for subtitles that do not themselves specify a particular font. The
default is sans-serif.

Examples

• --osd-font='Bitstream Vera Sans'

• --osd-font='Bitstream Vera Sans:style=Bold' (fontconfig pattern)

Note

The --sub-text-font option (and most other --sub-text- options) are ignored when
ASS-subtitles are rendered, unless the --no-sub-ass option is specified.

--osd-font-size=<size>, --sub-text-font-size=<size>

Specify the OSD/sub font size. The unit is the size in scaled pixels at a window height of 720. The
actual pixel size is scaled with the window height: if the window height is larger or smaller than 720,
the actual size of the text increases or decreases as well.

Default: 55.

--osd-msg1=<string>

Show this string as message on OSD with OSD level 1 (visible by default). The message will be
visible by default, and as long no other message covers it, and the OSD level isn't changed (see
--osd-level). Expands properties; see Property Expansion.

--osd-msg2=<string>

Similar as --osd-msg1, but for OSD level 2. If this is an empty string (default), then the playback
time is shown.

--osd-msg3=<string>

Similar as --osd-msg1, but for OSD level 3. If this is an empty string (default), then the playback
time, duration, and some more information is shown.

This is also used for the show_progress command (by default mapped to P), or in some
non-default cases when seeking.

--osd-status-msg is a legacy equivalent (but with a minor difference).

--osd-status-msg=<string>

Show a custom string during playback instead of the standard status text. This overrides the status
text used for --osd-level=3, when using the show_progress command (by default mapped to
P), or in some non-default cases when seeking. Expands properties. See Property Expansion.

This option has been replaced with --osd-msg3. The only difference is that this option implicitly
includes ${osd-sym-cc}. This option is ignored if --osd-msg3 is not empty.

--osd-playing-msg=<string>

Show a message on OSD when playback starts. The string is expanded for properties, e.g.
--osd-playing-msg='file: ${filename}' will show the message file: followed by a
space and the currently played filename.

See Property Expansion.

--osd-bar-align-x=<-1-1>

Position of the OSD bar. -1 is far left, 0 is centered, 1 is far right. Fractional values (like 0.5) are
allowed.

--osd-bar-align-y=<-1-1>

Position of the OSD bar. -1 is top, 0 is centered, 1 is bottom. Fractional values (like 0.5) are allowed.

--osd-bar-w=<1-100>

Width of the OSD bar, in percentage of the screen width (default: 75). A value of 50 means the bar is
half the screen wide.

--osd-bar-h=<0.1-50>

Height of the OSD bar, in percentage of the screen height (default: 3.125).

--osd-back-color=<color>, --sub-text-back-color=<color>

See --osd-color. Color used for OSD/sub text background.

--osd-blur=<0..20.0>, --sub-text-blur=<0..20.0>

Gaussian blur factor. 0 means no blur applied (default).

--osd-bold=<yes|no>, --sub-text-bold=<yes|no>

Format text on bold.

--osd-border-color=<color>, --sub-text-border-color=<color>

See --osd-color. Color used for the OSD/sub font border.

Note

ignored when --osd-back-color/--sub-text-back-color is specified (or more
exactly: when that option is not set to completely transparent).

--osd-border-size=<size>, --sub-text-border-size=<size>

Size of the OSD/sub font border in scaled pixels (see --osd-font-size for details). A value of 0
disables borders.

Default: 3.

--osd-color=<color>, --sub-text-color=<color>

Specify the color used for OSD/unstyled text subtitles.

The color is specified in the form r/g/b, where each color component is specified as number in the
range 0.0 to 1.0. It's also possible to specify the transparency by using r/g/b/a, where the alpha
value 0 means fully transparent, and 1.0 means opaque. If the alpha component is not given, the
color is 100% opaque.

Passing a single number to the option sets the OSD to gray, and the form gray/a lets you specify
alpha additionally.

Examples

• --osd-color=1.0/0.0/0.0 set OSD to opaque red

• --osd-color=1.0/0.0/0.0/0.75 set OSD to opaque red with 75% alpha

• --osd-color=0.5/0.75 set OSD to 50% gray with 75% alpha

Alternatively, the color can be specified as a RGB hex triplet in the form #RRGGBB, where each 2-digit
group expresses a color value in the range 0 (00) to 255 (FF). For example, #FF0000 is red. This is
similar to web colors. Alpha is given with #AARRGGBB.

Examples

• --osd-color='#FF0000' set OSD to opaque red

• --osd-color='#C0808080' set OSD to 50% gray with 75% alpha

--osd-fractions

Show OSD times with fractions of seconds (in millisecond precision). Useful to see the exact
timestamp of a video frame.

--osd-level=<0-3>

Specifies which mode the OSD should start in.

0: OSD completely disabled (subtitles only)

1: enabled (shows up only on user interaction)

2: enabled + current time visible by default

3: enabled + --osd-status-msg (current time and status by default)

--osd-margin-x=<size>, --sub-text-margin-x=<size>

Left and right screen margin for the OSD/subs in scaled pixels (see --osd-font-size for details).

This option specifies the distance of the OSD to the left, as well as at which distance from the right
border long OSD text will be broken.

Default: 25.

--osd-margin-y=<size>, --sub-text-margin-y=<size>

Top and bottom screen margin for the OSD/subs in scaled pixels (see --osd-font-size for
details).

This option specifies the vertical margins of the OSD. This is also used for unstyled text subtitles. If
you just want to raise the vertical subtitle position, use --sub-pos.

Default: 22.

--osd-align-x=<left|center|right>, --sub-text-align-x=...

Control to which corner of the screen OSD or text subtitles should be aligned to (default: center for
subs, left for OSD).

Never applied to ASS subtitles, except in --no-sub-ass mode. Likewise, this does not apply to
image subtitles.

--osd-align-y=<top|center|bottom> --sub-text-align-y=...

Vertical position (default: bottom for subs, top for OSD). Details see --osd-align-x.

--osd-scale=<factor>

OSD font size multiplier, multiplied with --osd-font-size value.

--osd-scale-by-window=<yes|no>

Whether to scale the OSD with the window size (default: yes). If this is disabled, --osd-font-size
and other OSD options that use scaled pixels are always in actual pixels. The effect is that changing
the window size won't change the OSD font size.

--osd-shadow-color=<color>, --sub-text-shadow-color=<color>

See --osd-color. Color used for OSD/sub text shadow.

--osd-shadow-offset=<size>, --sub-text-shadow-offset=<size>

Displacement of the OSD/sub text shadow in scaled pixels (see --osd-font-size for details). A
value of 0 disables shadows.

Default: 0.

--osd-spacing=<size>, --sub-text-spacing=<size>

Horizontal OSD/sub font spacing in scaled pixels (see --osd-font-size for details). This value is
added to the normal letter spacing. Negative values are allowed.

Default: 0.

--use-text-osd=<yes|no>

Disable text OSD rendering completely. (This includes the complete OSC as well.) This is mostly
useful for avoiding loading fontconfig in situations where fontconfig does not behave well, and OSD is
unused - this could for example allow GUI programs using libmpv to workaround fontconfig issues.

Note that selecting subtitles of any kind still initializes fontconfig.

Default: no.

Screenshot
--screenshot-format=<type>

Set the image file type used for saving screenshots.

Available choices:

png: PNG

ppm: PPM

pgm: PGM

pgmyuv: PGM with YV12 pixel format

tga: TARGA

jpg: JPEG (default)

jpeg: JPEG (same as jpg, but with .jpeg file ending)

--screenshot-tag-colorspace=<yes|no>

Tag screenshots with the appropriate colorspace.

Note that not all formats are supported.

Default: no.

--screenshot-high-bit-depth=<yes|no>

If possible, write screenshots with a bit depth similar to the source video (default: yes). This is
interesting in particular for PNG, as this sometimes triggers writing 16 bit PNGs with huge file sizes.

--screenshot-template=<template>

Specify the filename template used to save screenshots. The template specifies the filename without
file extension, and can contain format specifiers, which will be substituted when taking a screenshot.
By default the template is mpv-shot%n, which results in filenames like mpv-shot0012.png for
example.

The template can start with a relative or absolute path, in order to specify a directory location where
screenshots should be saved.

If the final screenshot filename points to an already existing file, the file will not be overwritten. The
screenshot will either not be saved, or if the template contains %n, saved using different, newly
generated filename.

Allowed format specifiers:

%[#][0X]n

A sequence number, padded with zeros to length X (default: 04). E.g. passing the format %04n
will yield 0012 on the 12th screenshot. The number is incremented every time a screenshot is
taken or if the file already exists. The length X must be in the range 0-9. With the optional # sign,
mpv will use the lowest available number. For example, if you take three screenshots--0001,
0002, 0003--and delete the first two, the next two screenshots will not be 0004 and 0005, but
0001 and 0002 again.

%f

Filename of the currently played video.

%F

Same as %f, but strip the file extension, including the dot.

%x

Directory path of the currently played video. If the video is not on the filesystem (but e.g.
http://), this expand to an empty string.

%X{fallback}

Same as %x, but if the video file is not on the filesystem, return the fallback string inside the
{...}.

%p

Current playback time, in the same format as used in the OSD. The result is a string of the form
"HH:MM:SS". For example, if the video is at the time position 5 minutes and 34 seconds, %p will
be replaced with "00:05:34".

%P

Similar to %p, but extended with the playback time in milliseconds. It is formatted as
"HH:MM:SS.mmm", with "mmm" being the millisecond part of the playback time.

Note

This is a simple way for getting unique per-frame timestamps. (Frame numbers would be
more intuitive, but are not easily implementable because container formats usually use
time stamps for identifying frames.)

%wX

Specify the current playback time using the format string X. %p is like %wH:%wM:%wS, and %P is
like %wH:%wM:%wS.%wT.

Valid format specifiers:

%wH

hour (padded with 0 to two digits)

%wh

hour (not padded)

%wM

minutes (00-59)

%wm

total minutes (includes hours, unlike %wM)

%wS

seconds (00-59)

%ws

total seconds (includes hours and minutes)

%wf

like %ws, but as float

%wT

milliseconds (000-999)

%tX

Specify the current local date/time using the format X. This format specifier uses the UNIX
strftime() function internally, and inserts the result of passing "%X" to strftime. For
example, %tm will insert the number of the current month as number. You have to use multiple
%tX specifiers to build a full date/time string.

%{prop[:fallback text]}

Insert the value of the slave property 'prop'. E.g. %{filename} is the same as %f. If the
property does not exist or is not available, an error text is inserted, unless a fallback is specified.

%%

Replaced with the % character itself.

--screenshot-directory=<path>

Store screenshots in this directory. This path is joined with the filename generated by
--screenshot-template. If the template filename is already absolute, the directory is ignored.

If the directory does not exist, it is created on the first screenshot. If it is not a directory, an error is
generated when trying to write a screenshot.

This option is not set by default, and thus will write screenshots to the directory from which mpv was
started. In pseudo-gui mode (see PSEUDO GUI MODE), this is set to the desktop.

--screenshot-jpeg-quality=<0-100>

Set the JPEG quality level. Higher means better quality. The default is 90.

--screenshot-jpeg-source-chroma=<yes|no>

Write JPEG files with the same chroma subsampling as the video (default: yes). If disabled, the
libjpeg default is used.

--screenshot-png-compression=<0-9>

Set the PNG compression level. Higher means better compression. This will affect the file size of the
written screenshot file and the time it takes to write a screenshot. Too high compression might occupy
enough CPU time to interrupt playback. The default is 7.

--screenshot-png-filter=<0-5>

Set the filter applied prior to PNG compression. 0 is none, 1 is "sub", 2 is "up", 3 is "average", 4 is
"Paeth", and 5 is "mixed". This affects the level of compression that can be achieved. For most
images, "mixed" achieves the best compression ratio, hence it is the default.

Software Scaler
--sws-scaler=<name>

Specify the software scaler algorithm to be used with --vf=scale. This also affects video output
drivers which lack hardware acceleration, e.g. x11. See also --vf=scale.

To get a list of available scalers, run --sws-scaler=help.

Default: bicubic.

--sws-lgb=<0-100>

Software scaler Gaussian blur filter (luma). See --sws-scaler.

--sws-cgb=<0-100>

Software scaler Gaussian blur filter (chroma). See --sws-scaler.

--sws-ls=<-100-100>

Software scaler sharpen filter (luma). See --sws-scaler.

--sws-cs=<-100-100>

Software scaler sharpen filter (chroma). See --sws-scaler.

--sws-chs=<h>

Software scaler chroma horizontal shifting. See --sws-scaler.

--sws-cvs=<v>

Software scaler chroma vertical shifting. See --sws-scaler.

Terminal
--quiet

Make console output less verbose; in particular, prevents the status line (i.e. AV: 3.4 (00:00:03.37) /
5320.6 ...) from being displayed. Particularly useful on slow terminals or broken ones which do not
properly handle carriage return (i.e. \r).

Also see --really-quiet and --msg-level.

--really-quiet

Display even less output and status messages than with --quiet.

--no-terminal, --terminal

Disable any use of the terminal and stdin/stdout/stderr. This completely silences any message output.

Unlike --really-quiet, this disables input and terminal initialization as well.

--no-msg-color

Disable colorful console output on terminals.

--msg-level=<module1=level1,module2=level2,...>

Control verbosity directly for each module. The all module changes the verbosity of all the modules
not explicitly specified on the command line.

Run mpv with --msg-level=all=trace to see all messages mpv outputs. You can use the
module names printed in the output (prefixed to each line in [...]) to limit the output to interesting
modules.

Note

Some messages are printed before the command line is parsed and are therefore not affected
by --msg-level. To control these messages, you have to use the MPV_VERBOSE
environment variable; see ENVIRONMENT VARIABLES for details.

Available levels:

no: complete silence

fatal: fatal messages only

error: error messages

warn: warning messages

info: informational messages

status: status messages (default)

v: verbose messages

debug: debug messages

trace: very noisy debug messages

--term-osd, --no-term-osd, --term-osd=force

Display OSD messages on the console when no video output is available. Enabled by default.

force enables terminal OSD even if a video window is created.

--term-osd-bar, --no-term-osd-bar

Enable printing a progress bar under the status line on the terminal. (Disabled by default.)

--term-osd-bar-chars=<string>

Customize the --term-osd-bar feature. The string is expected to consist of 5 characters (start, left
space, position indicator, right space, end). You can use Unicode characters, but note that double-
width characters will not be treated correctly.

Default: [-+-].

--term-playing-msg=<string>

Print out a string after starting playback. The string is expanded for properties, e.g.
--term-playing-msg='file: ${filename}' will print the string file: followed by a space
and the currently played filename.

See Property Expansion.

--term-status-msg=<string>

Print out a custom string during playback instead of the standard status line. Expands properties. See
Property Expansion.

--msg-module

Prepend module name to each console message.

--msg-time

Prepend timing information to each console message.

TV
--tv-...

These options tune various properties of the TV capture module. For watching TV with mpv, use
tv:// or tv://<channel_number> or even tv://<channel_name> (see option
tv-channels for channel_name below) as a media URL. You can also use tv:///<input_id>
to start watching a video from a composite or S-Video input (see option input for details).

--tv-device=<value>

Specify TV device (default: /dev/video0).

--tv-channel=<value>

Set tuner to <value> channel.

--no-tv-audio

no sound

--tv-automute=<0-255> (v4l and v4l2 only)

If signal strength reported by device is less than this value, audio and video will be muted. In most
cases automute=100 will be enough. Default is 0 (automute disabled).

--tv-driver=<value>

See --tv=driver=help for a list of compiled-in TV input drivers. available: dummy, v4l2 (default:
autodetect)

--tv-input=<value>

Specify input (default: 0 (TV), see console output for available inputs).

--tv-freq=<value>

Specify the frequency to set the tuner to (e.g. 511.250). Not compatible with the channels parameter.

--tv-outfmt=<value>

Specify the output format of the tuner with a preset value supported by the V4L driver (YV12, UYVY,
YUY2, I420) or an arbitrary format given as hex value.

--tv-width=<value>

output window width

--tv-height=<value>

output window height

--tv-fps=<value>

framerate at which to capture video (frames per second)

--tv-buffersize=<value>

maximum size of the capture buffer in megabytes (default: dynamical)

--tv-norm=<value>

See the console output for a list of all available norms, also see the normid option below.

--tv-normid=<value> (v4l2 only)

Sets the TV norm to the given numeric ID. The TV norm depends on the capture card. See the
console output for a list of available TV norms.

--tv-chanlist=<value>

available: argentina, australia, china-bcast, europe-east, europe-west, france, ireland, italy,
japan-bcast, japan-cable, newzealand, russia, southafrica, us-bcast, us-cable, us-cable-hrc

--tv-channels=<chan>-<name>[=<norm>],<chan>-<name>[=<norm>],...

Set names for channels.

Note

If <chan> is an integer greater than 1000, it will be treated as frequency (in kHz) rather than
channel name from frequency table. Use _ for spaces in names (or play with quoting ;-)). The
channel names will then be written using OSD, and the slave commands tv_step_channel,
tv_set_channel and tv_last_channel will be usable for a remote control. Not
compatible with the frequency parameter.

Note

The channel number will then be the position in the 'channels' list, beginning with 1.

Examples

tv://1, tv://TV1, tv_set_channel 1, tv_set_channel TV1

--tv-[brightness|contrast|hue|saturation]=<-100-100>

Set the image equalizer on the card.

--tv-audiorate=<value>

Set input audio sample rate.

--tv-forceaudio

Capture audio even if there are no audio sources reported by v4l.

--tv-alsa

Capture from ALSA.

--tv-amode=<0-3>

Choose an audio mode:

0: mono

1: stereo

2: language 1

3: language 2

--tv-forcechan=<1-2>

By default, the count of recorded audio channels is determined automatically by querying the audio
mode from the TV card. This option allows forcing stereo/mono recording regardless of the amode
option and the values returned by v4l. This can be used for troubleshooting when the TV card is
unable to report the current audio mode.

--tv-adevice=<value>

Set an audio device. <value> should be /dev/xxx for OSS and a hardware ID for ALSA. You must
replace any ':' by a '.' in the hardware ID for ALSA.

--tv-audioid=<value>

Choose an audio output of the capture card, if it has more than one.

--tv-[volume|bass|treble|balance]=<0-100>

These options set parameters of the mixer on the video capture card. They will have no effect, if your
card does not have one. For v4l2 50 maps to the default value of the control, as reported by the
driver.

--tv-gain=<0-100>

Set gain control for video devices (usually webcams) to the desired value and switch off automatic
control. A value of 0 enables automatic control. If this option is omitted, gain control will not be
modified.

--tv-immediatemode=<bool>

A value of 0 means capture and buffer audio and video together. A value of 1 (default) means to do
video capture only and let the audio go through a loopback cable from the TV card to the sound card.

--tv-mjpeg

Use hardware MJPEG compression (if the card supports it). When using this option, you do not need
to specify the width and height of the output window, because mpv will determine it automatically from
the decimation value (see below).

--tv-decimation=<1|2|4>

choose the size of the picture that will be compressed by hardware MJPEG compression:

1: full size

• 704x576 PAL

• 704x480 NTSC
2: medium size

• 352x288 PAL

• 352x240 NTSC
4: small size

• 176x144 PAL

• 176x120 NTSC

--tv-quality=<0-100>

Choose the quality of the JPEG compression (< 60 recommended for full size).

--tv-scan-autostart

Begin channel scanning immediately after startup (default: disabled).

--tv-scan-period=<0.1-2.0>

Specify delay in seconds before switching to next channel (default: 0.5). Lower values will cause
faster scanning, but can detect inactive TV channels as active.

--tv-scan-threshold=<1-100>

Threshold value for the signal strength (in percent), as reported by the device (default: 50). A signal
strength higher than this value will indicate that the currently scanning channel is active.

Cache
--cache=<kBytes|yes|no|auto>

Set the size of the cache in kilobytes, disable it with no, or automatically enable it if needed with
auto (default: auto). With auto, the cache will usually be enabled for network streams, using the
size set by --cache-default. With yes, the cache will always be enabled with the size set by
--cache-default (unless the stream can not be cached, or --cache-default disables
caching).

May be useful when playing files from slow media, but can also have negative effects, especially with
file formats that require a lot of seeking, such as MP4.

Note that half the cache size will be used to allow fast seeking back. This is also the reason why a full
cache is usually not reported as 100% full. The cache fill display does not include the part of the
cache reserved for seeking back. The actual maximum percentage will usually be the ratio between
readahead and backbuffer sizes.

--cache-default=<kBytes|no>

Set the size of the cache in kilobytes (default: 75000 KB). Using no will not automatically enable the
cache e.g. when playing from a network stream. Note that using --cache will always override this
option.

--cache-initial=<kBytes>

Playback will start when the cache has been filled up with this many kilobytes of data (default: 0).

--cache-seek-min=<kBytes>

If a seek is to be made to a position within <kBytes> of the cache size from the current position,
mpv will wait for the cache to be filled to this position rather than performing a stream seek (default:
500).

This matters for small forward seeks. With slow streams (especially HTTP streams) there is a tradeoff
between skipping the data between current position and seek destination, or performing an actual
seek. Depending on the situation, either of these might be slower than the other method. This option
allows control over this.

--cache-backbuffer=<kBytes>

Size of the cache back buffer (default: 75000 KB). This will add to the total cache size, and reserved
the amount for seeking back. The reserved amount will not be used for readahead, and instead
preserves already read data to enable fast seeking back.

--cache-file=<TMP|path>

Create a cache file on the filesystem.

There are two ways of using this:

1. Passing a path (a filename). The file will always be overwritten. When the general cache is
enabled, this file cache will be used to store whatever is read from the source stream.

This will always overwrite the cache file, and you can't use an existing cache file to resume
playback of a stream. (Technically, mpv wouldn't even know which blocks in the file are valid
and which not.)

The resulting file will not necessarily contain all data of the source stream. For example, if you
seek, the parts that were skipped over are never read and consequently are not written to the
cache. The skipped over parts are filled with zeros. This means that the cache file doesn't
necessarily correspond to a full download of the source stream.

Both of these issues could be improved if there is any user interest.

Warning

Causes random corruption when used with ordered chapters or with --audio-file.

2. Passing the string TMP. This will not be interpreted as filename. Instead, an invisible temporary
file is created. It depends on your C library where this file is created (usually /tmp/), and
whether filename is visible (the tmpfile() function is used). On some systems, automatic
deletion of the cache file might not be guaranteed.

If you want to use a file cache, this mode is recommended, because it doesn't break ordered
chapters or --audio-file. These modes open multiple cache streams, and using the same
file for them obviously clashes.

Also see --cache-file-size.

--cache-file-size=<kBytes>

Maximum size of the file created with --cache-file. For read accesses above this size, the cache
is simply not used.

Keep in mind that some use-cases, like playing ordered chapters with cache enabled, will actually
create multiple cache files, each of which will use up to this much disk space.

(Default: 1048576, 1 GB.)

--no-cache

Turn off input stream caching. See --cache.

--cache-secs=<seconds>

How many seconds of audio/video to prefetch if the cache is active. This overrides the
--demuxer-readahead-secs option if and only if the cache is enabled and the value is larger.
(Default: 10.)

--cache-pause, --no-cache-pause

Whether the player should automatically pause when the cache runs low, and unpause once more
data is available ("buffering").

Network
--user-agent=<string>

Use <string> as user agent for HTTP streaming.

--cookies, --no-cookies

Support cookies when making HTTP requests. Disabled by default.

--cookies-file=<filename>

Read HTTP cookies from <filename>. The file is assumed to be in Netscape format.

--http-header-fields=<field1,field2>

Set custom HTTP fields when accessing HTTP stream.

Example

mpv --http-header-fields='Field1: value1','Field2: value2' \
http://localhost:1234

Will generate HTTP request:

GET / HTTP/1.0
Host: localhost:1234
User-Agent: MPlayer
Icy-MetaData: 1
Field1: value1
Field2: value2
Connection: close

--tls-ca-file=<filename>

Certificate authority database file for use with TLS. (Silently fails with older FFmpeg or Libav
versions.)

--tls-verify

Verify peer certificates when using TLS (e.g. with https://...). (Silently fails with older FFmpeg or
Libav versions.)

--referrer=<string>

Specify a referrer path or URL for HTTP requests.

--network-timeout=<seconds>

Specify the network timeout in seconds. This affects at least HTTP. The special value 0 (default) uses
the FFmpeg/Libav defaults. If a protocol is used which does not support timeouts, this option is
silently ignored.

--rtsp-transport=<lavf|udp|tcp|http>

Select RTSP transport method (default: tcp). This selects the underlying network transport when
playing rtsp://... URLs. The value lavf leaves the decision to libavformat.

--hls-bitrate=<no|min|max|<rate>>

If HLS streams are played, this option controls what streams are selected by default. The option
allows the following parameters:

no: Don't do anything special. Typically, this will simply pick the first audio/video
streams it can find.

min: Pick the streams with the lowest bitrate.

max: Same, but highest bitrate. (Default.)

Additionally, if the option is a number, the stream with the highest rate equal or below the option value
is selected.

The bitrate as used is sent by the server, and there's no guarantee it's actually meaningful.

DVB
--dvbin-card=<1-4>

Specifies using card number 1-4 (default: 1).

--dvbin-file=<filename>

Instructs mpv to read the channels list from <filename>. The default is in the mpv configuration
directory (usually ~/.config/mpv) with the filename channels.conf.{sat,ter,cbl,atsc}
(based on your card type) or channels.conf as a last resort. For DVB-S/2 cards, a VDR 1.7.x
format channel list is recommended as it allows tuning to DVB-S2 channels, enabling subtitles and
decoding the PMT (which largely improves the demuxing). Classic mplayer format channel lists are
still supported (without these improvements), and for other card types, only limited VDR format
channel list support is implemented (patches welcome). For channels with dynamic PID switching or
incomplete channels.conf, --dvbin-full-transponder or the magic PID 8192 are
recommended.

--dvbin-timeout=<1-30>

Maximum number of seconds to wait when trying to tune a frequency before giving up (default: 30).

--dvbin-full-transponder=<yes|no>

Apply no filters on program PIDs, only tune to frequency and pass full transponder to demuxer. This
is useful to record multiple programs on a single transponder, or to work around issues in the
channels.conf. It is also recommended to use this for channels which switch PIDs on-the-fly, e.g.
for regional news.

Default: no

PVR
--pvr-...

These options tune various encoding properties of the PVR capture module. It has to be used with
any hardware MPEG encoder based card supported by the V4L2 driver. The Hauppauge WinTV
PVR-150/250/350/500 and all IVTV based cards are known as PVR capture cards. Be aware that
only Linux 2.6.18 kernel and above is able to handle MPEG stream through V4L2 layer. For hardware
capture of an MPEG stream and watching it with mpv, use pvr:// as media URL.

--pvr-aspect=<0-3>

Specify input aspect ratio:

0: 1:1

1: 4:3 (default)

2: 16:9

3: 2.21:1

--pvr-arate=<32000-48000>

Specify encoding audio rate (default: 48000 Hz, available: 32000, 44100 and 48000 Hz).

--pvr-alayer=<1-3>

Specify MPEG audio layer encoding (default: 2).

--pvr-abitrate=<32-448>

Specify audio encoding bitrate in kbps (default: 384).

--pvr-amode=<value>

Specify audio encoding mode. Available preset values are 'stereo', 'joint_stereo', 'dual' and 'mono'
(default: stereo).

--pvr-vbitrate=<value>

Specify average video bitrate encoding in Mbps (default: 6).

--pvr-vmode=<value>

Specify video encoding mode:

vbr: Variable Bit Rate (default)

cbr: Constant Bit Rate

--pvr-vpeak=<value>

Specify peak video bitrate encoding in Mbps (only useful for VBR encoding, default: 9.6).

--pvr-fmt=<value>

Choose an MPEG format for encoding:

ps: MPEG-2 Program Stream (default)

ts: MPEG-2 Transport Stream

mpeg1: MPEG-1 System Stream

vcd: Video CD compatible stream

svcd: Super Video CD compatible stream

dvd: DVD compatible stream

Miscellaneous
--display-tags=tag1,tags2,...

Set the list of tags that should be displayed on the terminal. Tags that are in the list, but are not
present in the played file, will not be shown. If a value ends with *, all tags are matched by prefix
(though there is no general globbing). Just passing * essentially filtering.

The default includes a common list of tags, call mpv with --list-options to see it.

--mc=<seconds/frame>

Maximum A-V sync correction per frame (in seconds)

--autosync=<factor>

Gradually adjusts the A/V sync based on audio delay measurements. Specifying --autosync=0, the
default, will cause frame timing to be based entirely on audio delay measurements. Specifying
--autosync=1 will do the same, but will subtly change the A/V correction algorithm. An uneven
video framerate in a video which plays fine with --no-audio can often be helped by setting this to
an integer value greater than 1. The higher the value, the closer the timing will be to --no-audio.
Try --autosync=30 to smooth out problems with sound drivers which do not implement a perfect
audio delay measurement. With this value, if large A/V sync offsets occur, they will only take about 1
or 2 seconds to settle out. This delay in reaction time to sudden A/V offsets should be the only
side-effect of turning this option on, for all sound drivers.

--video-sync=<audio|...>

How the player synchronizes audio and video.

The modes starting with display- try to output video frames completely synchronously to the
display, using the detected display vertical refresh rate as a hint how fast frames will be displayed on
average. These modes change video speed slightly to match the display. See --video-sync-...
options for fine tuning. The robustness of this mode is further reduced by making a some idealized
assumptions, which may not always apply in reality. Behavior can depend on the VO and the
system's video and audio drivers. Media files must use constant framerate. Section-wise VFR might
work as well with some container formats (but not e.g. mkv). If the sync code detects severe A/V
desync, or the framerate cannot be detected, the player automatically reverts to audio mode for
some time or permanently.

The modes with desync in their names do not attempt to keep audio/video in sync. They will slowly
(or quickly) desync, until e.g. the next seek happens. These modes are meant for testing, not serious
use.

audio: Time video frames to audio. This is the most robust mode, because the player
doesn't have to assume anything about how the display behaves. The
disadvantage is that it can lead to occasional frame drops or repeats. If audio is
disabled, this uses the system clock. This is the default mode.

display-resam
ple:

Resample audio to match the video. This mode will also try to adjust audio
speed to compensate for other drift. (This means it will play the audio at a
different speed every once in a while to reduce the A/V difference.)

display-resam
ple-vdrop:

Resample audio to match the video. Drop video frames to compensate for drift.

display-resam
ple-desync:

Like the previous mode, but no A/V compensation.

display-vdrop: Drop or repeat video frames to compensate desyncing video. (Although it
should have the same effects as audio, the implementation is very different.)

display-desync
:

Sync video to display, and let audio play on its own.

desync: Sync video according to system clock, and let audio play on its own.

--video-sync-max-video-change=<value>

Maximum speed difference in percent that is applied to video with --video-sync=display-...
(default: 1). Display sync mode will be disabled if the monitor and video refresh way do not match
within the given range. It tries multiples as well: playing 30 fps video on a 60 Hz screen will duplicate
every second frame. Playing 24 fps video on a 60 Hz screen will play video in a 2-3-2-3-... pattern.

The default settings are not loose enough to speed up 23.976 fps video to 25 fps. We consider the
pitch change too extreme to allow this behavior by default. Set this option to a value of 5 to enable it.

Note that in the --video-sync=display-resample mode, audio speed will additionally be
changed by a small amount if necessary for A/V sync. See --video-sync-max-audio-change.

--video-sync-max-audio-change=<value>

Maximum additional speed difference in percent that is applied to audio with
--video-sync=display-... (default: 0.125). Normally, the player play the audio at the speed of
the video. But if the difference between audio and video position is too high, e.g. due to drift or other
timing errors, it will attempt to speed up or slow down audio by this additional factor. Too low values
could lead to video frame dropping or repeating if the A/V desync cannot be compensated, too high
values could lead to chaotic frame dropping due to the audio "overshooting" and skipping multiple
video frames before the sync logic can react.

--mf-fps=<value>

Framerate used when decoding from multiple PNG or JPEG files with mf:// (default: 1).

--mf-type=<value>

Input file type for mf:// (available: jpeg, png, tga, sgi). By default, this is guessed from the file
extension.

--stream-capture=<filename>

Allows capturing the primary stream (not additional audio tracks or other kind of streams) into the
given file. Capturing can also be started and stopped by changing the filename with the
stream-capture slave property. Generally this will not produce usable results for anything else
than MPEG or raw streams, unless capturing includes the file headers and is not interrupted. Note
that, due to cache latencies, captured data may begin and end somewhat delayed compared to what
you see displayed.

The destination file is always appended. (Before mpv 0.8.0, the file was overwritten.)

--stream-dump=<filename>

Same as --stream-capture, but do not start playback. Instead, the entire file is dumped.

--stream-lavf-o=opt1=value1,opt2=value2,...

Set AVOptions on streams opened with libavformat. Unknown or misspelled options are silently
ignored. (They are mentioned in the terminal output in verbose mode, i.e. --v. In general we can't
print errors, because other options such as e.g. user agent are not available with all protocols, and
printing errors for unknown options would end up being too noisy.)

--priority=<prio>

(Windows only.) Set process priority for mpv according to the predefined priorities available under
Windows.

Possible values of <prio>: idle|belownormal|normal|abovenormal|high|realtime

Warning

Using realtime priority can cause system lockup.

--pts-association-mode=<decode|sort|auto>

Select the method used to determine which container packet timestamp corresponds to a particular
output frame from the video decoder. Normally you should not need to change this option.

decoder: Use decoder reordering functionality. Unlike in classic MPlayer and mplayer2,
this includes a DTS fallback. (Default.)

sort: Maintain a buffer of unused pts values and use the lowest value for the frame.

auto: Try to pick a working mode from the ones above automatically.

You can also try to use --no-correct-pts for files with completely broken timestamps.

--force-media-title=<string>

Force the contents of the media-title property to this value. Useful for scripts which want to set a
title, without overriding the user's setting in --title.

AUDIO OUTPUT DRIVERS
Audio output drivers are interfaces to different audio output facilities. The syntax is:

--ao=<driver1[:suboption1[=value]:...],driver2,...[,]>

Specify a priority list of audio output drivers to be used.

If the list has a trailing ',', mpv will fall back on drivers not contained in the list. Suboptions are optional and
can mostly be omitted.

You can also set defaults for each driver. The defaults are applied before the normal driver parameters.

--ao-defaults=<driver1[:parameter1:parameter2:...],driver2,...>

Set defaults for each driver.

Note

See --ao=help for a list of compiled-in audio output drivers. The driver --ao=alsa is
preferred. --ao=pulse is preferred on systems where PulseAudio is used. On Windows,
--ao=wasapi is preferred, though it might cause trouble sometimes, in which case
--ao=dsound should be used. On BSD systems, --ao=oss or --ao=sndio` may work (the latter
being experimental). On OS X systems, use --ao=coreaudio.

Examples

• --ao=alsa,oss, Try the ALSA driver, then the OSS driver, then others.

• --ao=alsa:resample=yes:device=[plughw:0,3] Lets ALSA resample and sets the
device-name as first card, fourth device.

Available audio output drivers are:

alsa (Linux only)

ALSA audio output driver

device=<device>

Sets the device name. For ac3 output via S/PDIF, use an "iec958" or "spdif" device, unless you
really know how to set it correctly.

resample=yes

Enable ALSA resampling plugin. (This is disabled by default, because some drivers report
incorrect audio delay in some cases.)

mixer-device=<device>

Set the mixer device used with --no-softvol (default: default).

mixer-name=<name>

Set the name of the mixer element (default: Master). This is for example PCM or Master.

mixer-index=<number>

Set the index of the mixer channel (default: 0). Consider the output of "amixer scontrols",
then the index is the number that follows the name of the element.

non-interleaved

Allow output of non-interleaved formats (if the audio decoder uses this format). Currently
disabled by default, because some popular ALSA plugins are utterly broken with non-interleaved
formats.

ignore-chmap

Don't read or set the channel map of the ALSA device - only request the required number of
channels, and then pass the audio as-is to it. This option most likely should not be used. It can
be useful for debugging, or for static setups with a specially engineered ALSA configuration (in
this case you should always force the same layout with --audio-channels, or it will work only
for files which use the layout implicit to your ALSA device).

Note

MPlayer and mplayer2 required you to replace any ',' with '.' and any ':' with '=' in the ALSA
device name. mpv does not do this anymore. Instead, quote the device name:

--ao=alsa:device=[plug:surround50]

Note that the [and] simply quote the device name. With some shells (like zsh), you have to
quote the option string to prevent the shell from interpreting the brackets instead of passing
them to mpv.

Actually, you should use the --audio-device option, instead of setting the device directly.

Warning

Handling of multichannel/surround audio changed in mpv 0.8.0 from the behavior in
MPlayer/mplayer2 and older versions of mpv.

The old behavior is that the player always downmixed to stereo by default. The
--audio-channels (or --channels before that) option had to be set to get multichannel
audio. Then playing stereo would use the default device (which typically allows multiple
programs to play audio at the same time via dmix), while playing anything with more channels
would open one of the hardware devices, e.g. via the surround51 alias (typically with
exclusive access). Whether the player would use exclusive access or not would depend on
the file being played.

The new behavior since mpv 0.8.0 always enables multichannel audio, i.e.
--audio-channels=auto is the default. However, since ALSA provides no good way to
play multichannel audio in a non-exclusive way (without blocking other applications from using
audio), the player is restricted to the capabilities of the default device by default, which
means it supports only stereo and mono (at least with current typical ALSA configurations).
But if a hardware device is selected, then multichannel audio will typically work.

The short story is: if you want multichannel audio with ALSA, use --audio-device to select
the device (use --audio-device=help to get a list of all devices and their mpv name).

You can also try using the upmix plugin. This setup enables multichannel audio on the
default device with automatic upmixing with shared access, so playing stereo and
multichannel audio at the same time will work as expected.

oss

OSS audio output driver

<dsp-device>

Sets the audio output device (default: /dev/dsp).

<mixer-device>

Sets the audio mixer device (default: /dev/mixer).

<mixer-channel>

Sets the audio mixer channel (default: pcm). Other valid values include vol, pcm, line. For a
complete list of options look for SOUND_DEVICE_NAMES in
/usr/include/linux/soundcard.h.

jack

JACK (Jack Audio Connection Kit) audio output driver

port=<name>

Connects to the ports with the given name (default: physical ports).

name=<client>

Client name that is passed to JACK (default: mpv). Useful if you want to have certain connections
established automatically.

(no-)autostart

Automatically start jackd if necessary (default: disabled). Note that this tends to be unreliable and
will flood stdout with server messages.

(no-)connect

Automatically create connections to output ports (default: enabled). When enabled, the maximum
number of output channels will be limited to the number of available output ports.

http://git.io/vfuAy

std-channel-layout=alsa|waveext|any

Select the standard channel layout (default: alsa). JACK itself has no notion of channel layouts
(i.e. assigning which speaker a given channel is supposed to map to) - it just takes whatever the
application outputs, and reroutes it to whatever the user defines. This means the user and the
application are in charge of dealing with the channel layout. alsa uses the old MPlayer layout,
which is inspired by ALSA's standard layouts. In this mode, ao_jack will refuse to play 3 or 7
channels (because these do not really have a defined meaning in MPlayer). waveext uses
WAVE_FORMAT_EXTENSIBLE order, which, even though it was defined by Microsoft, is the
standard on many systems. The value any makes JACK accept whatever comes from the audio
filter chain, regardless of channel layout and without reordering. This mode is probably not very
useful, other than for debugging or when used with fixed setups.

coreaudio (Mac OS X only)

Native Mac OS X audio output driver using AudioUnits and the CoreAudio sound server.

Automatically redirects to coreaudio_exclusive when playing compressed formats.

change-physical-format=<yes|no>

Change the physical format to one similar to the requested audio format (default: no). This has
the advantage that multichannel audio output will actually work. The disadvantage is that it will
change the system-wide audio settings. This is equivalent to changing the Format setting in the
Audio Devices dialog in the Audio MIDI Setup utility. Note that this does not effect the
selected speaker setup.

exclusive

Use exclusive mode access. This merely redirects to coreaudio_exclusive, but should be
preferred over using that AO directly.

coreaudio_exclusive (Mac OS X only)

Native Mac OS X audio output driver using direct device access and exclusive mode (bypasses the
sound server).

openal

Experimental OpenAL audio output driver

Note

This driver is not very useful. Playing multi-channel audio with it is slow.

pulse

PulseAudio audio output driver

[<host>][:<output sink>]

Specify the host and optionally output sink to use. An empty <host> string uses a local
connection, "localhost" uses network transfer (most likely not what you want).

buffer=<1-2000|native>

Set the audio buffer size in milliseconds. A higher value buffers more data, and has a lower
probability of buffer underruns. A smaller value makes the audio stream react faster, e.g. to
playback speed changes. Default: 250.

latency-hacks=<yes|no>

Enable hacks to workaround PulseAudio timing bugs (default: no). If enabled, mpv will do
elaborate latency calculations on its own. If disabled, it will use PulseAudio automatically
updated timing information. Disabling this might help with e.g. networked audio or some
plugins, while enabling it might help in some unknown situations (it used to be required to get
good behavior on old PulseAudio versions).

If you have stuttering video when using pulse, try to enable this option. (Or alternatively, try to
update PulseAudio.)

dsound (Windows only)

DirectX DirectSound audio output driver

Note

This driver is for compatibility with old systems.

device=<devicenum>

Sets the device number to use. Playing a file with -v will show a list of available devices.

buffersize=<ms>

DirectSound buffer size in milliseconds (default: 200).

sdl

SDL 1.2+ audio output driver. Should work on any platform supported by SDL 1.2, but may require
the SDL_AUDIODRIVER environment variable to be set appropriately for your system.

Note

This driver is for compatibility with extremely foreign environments, such as systems where
none of the other drivers are available.

buflen=<length>

Sets the audio buffer length in seconds. Is used only as a hint by the sound system. Playing a file
with -v will show the requested and obtained exact buffer size. A value of 0 selects the sound
system default.

bufcnt=<count>

Sets the number of extra audio buffers in mpv. Usually needs not be changed.

null

Produces no audio output but maintains video playback speed. Use --ao=null:untimed for
benchmarking.

untimed

Do not simulate timing of a perfect audio device. This means audio decoding will go as fast as
possible, instead of timing it to the system clock.

buffer

Simulated buffer length in seconds.

outburst

Simulated chunk size in samples.

speed

Simulated audio playback speed as a multiplier. Usually, a real audio device will not go exactly
as fast as the system clock. It will deviate just a little, and this option helps simulating this.

latency

Simulated device latency. This is additional to EOF.

broken-eof

Simulate broken audio drivers, which always add the fixed device latency to the reported audio
playback position.

broken-delay

Simulate broken audio drivers, which don't report latency correctly.

channel-layouts

If not empty, this is a , separated list of channel layouts the AO allows. This can be used to test
channel layout selection.

pcm

Raw PCM/WAVE file writer audio output

(no-)waveheader

Include or do not include the WAVE header (default: included). When not included, raw PCM will
be generated.

file=<filename>

Write the sound to <filename> instead of the default audiodump.wav. If no-waveheader is
specified, the default is audiodump.pcm.

(no-)append

Append to the file, instead of overwriting it. Always use this with the no-waveheader option -
with waveheader it's broken, because it will write a WAVE header every time the file is opened.

rsound

Audio output to an RSound daemon

Note

Completely useless, unless you intend to run RSound. Not to be confused with RoarAudio,
which is something completely different.

host=<name/path>

Set the address of the server (default: localhost). Can be either a network hostname for TCP
connections or a Unix domain socket path starting with '/'.

port=<number>

Set the TCP port used for connecting to the server (default: 12345). Not used if connecting to a
Unix domain socket.

sndio

Audio output to the OpenBSD sndio sound system

Note

Experimental. There are known bugs and issues.

(Note: only supports mono, stereo, 4.0, 5.1 and 7.1 channel layouts.)

device=<device>

sndio device to use (default: $AUDIODEVICE, resp. snd0).

wasapi

Audio output to the Windows Audio Session API.

exclusive

Requests exclusive, direct hardware access. By definition prevents sound playback of any other
program until mpv exits.

device=<id>

Uses the requested endpoint instead of the system's default audio endpoint. Both an ordinal
number (0,1,2,...) and the GUID String are valid; the GUID string is guaranteed to not change
unless the driver is uninstalled.

Also supports searching active devices by human readable name. If more than one device
matches the name, refuses loading it.

This option is mostly deprecated in favour of the more general --audio-device option. That
said, --audio-device=help will give a list of valid device GUIDs (prefixed with wasapi/), as
well as their human readable names, which should work here.

VIDEO OUTPUT DRIVERS
Video output drivers are interfaces to different video output facilities. The syntax is:

--vo=<driver1[:suboption1[=value]:...],driver2,...[,]>

Specify a priority list of video output drivers to be used.

If the list has a trailing ',', mpv will fall back on drivers not contained in the list. Suboptions are optional and
can mostly be omitted.

You can also set defaults for each driver. The defaults are applied before the normal driver parameters.

--vo-defaults=<driver1[:parameter1:parameter2:...],driver2,...>

Set defaults for each driver.

Note

See --vo=help for a list of compiled-in video output drivers.

The recommended output drivers are --vo=vdpau and --vo=opengl-hq. All other drivers are
just for compatibility or special purposes.

Example

--vo=opengl,xv,

Try the opengl driver, then the xv driver, then others.

Available video output drivers are:

xv (X11 only)

Uses the XVideo extension to enable hardware-accelerated display. This is the most compatible VO
on X, but may be low-quality, and has issues with OSD and subtitle display.

Note

This driver is for compatibility with old systems.

adaptor=<number>

Select a specific XVideo adapter (check xvinfo results).

port=<number>

Select a specific XVideo port.

ck=<cur|use|set>

Select the source from which the color key is taken (default: cur).

cur

The default takes the color key currently set in Xv.

use

Use but do not set the color key from mpv (use the --colorkey option to change it).

set

Same as use but also sets the supplied color key.

ck-method=<man|bg|auto>

Sets the color key drawing method (default: man).

man

Draw the color key manually (reduces flicker in some cases).

bg

Set the color key as window background.

auto

Let Xv draw the color key.

colorkey=<number>

Changes the color key to an RGB value of your choice. 0x000000 is black and 0xffffff is
white.

no-colorkey

Disables color-keying.

buffers=<number>

Number of image buffers to use for the internal ringbuffer (default: 2). Increasing this will use
more memory, but might help with the X server not responding quickly enough if video FPS is
close to or higher than the display refresh rate.

vdpau (X11 only)

Uses the VDPAU interface to display and optionally also decode video. Hardware decoding is used
with --hwdec=vdpau.

Note

Earlier versions of mpv (and MPlayer, mplayer2) provided sub-options to tune vdpau
post-processing, like deint, sharpen, denoise, chroma-deint, pullup, hqscaling.
These sub-options are deprecated, and you should use the vdpaupp video filter instead.

sharpen=<-1-1>

(Deprecated. See note about vdpaupp.)

For positive values, apply a sharpening algorithm to the video, for negative values a blurring
algorithm (default: 0).

denoise=<0-1>

(Deprecated. See note about vdpaupp.)

Apply a noise reduction algorithm to the video (default: 0; no noise reduction).

deint=<-4-4>

(Deprecated. See note about vdpaupp.)

Select deinterlacing mode (default: 0). In older versions (as well as MPlayer/mplayer2) you could
use this option to enable deinterlacing. This doesn't work anymore, and deinterlacing is enabled
with either the D key (by default mapped to the command cycle deinterlace), or the
--deinterlace option. Also, to select the default deint mode, you should use something like
--vf-defaults=vdpaupp:deint-mode=temporal instead of this sub-option.

0

Pick the vdpaupp video filter default, which corresponds to 3.

1

Show only first field.

2

Bob deinterlacing.

3

Motion-adaptive temporal deinterlacing. May lead to A/V desync with slow video hardware
and/or high resolution.

4

Motion-adaptive temporal deinterlacing with edge-guided spatial interpolation. Needs fast
video hardware.

chroma-deint

(Deprecated. See note about vdpaupp.)

Makes temporal deinterlacers operate both on luma and chroma (default). Use no-chroma-deint
to solely use luma and speed up advanced deinterlacing. Useful with slow video memory.

pullup

(Deprecated. See note about vdpaupp.)

Try to apply inverse telecine, needs motion adaptive temporal deinterlacing.

hqscaling=<0-9>

(Deprecated. See note about vdpaupp.)

0

Use default VDPAU scaling (default).

1-9

Apply high quality VDPAU scaling (needs capable hardware).

fps=<number>

Override autodetected display refresh rate value (the value is needed for framedrop to allow
video playback rates higher than display refresh rate, and for vsync-aware frame timing
adjustments). Default 0 means use autodetected value. A positive value is interpreted as a
refresh rate in Hz and overrides the autodetected value. A negative value disables all timing
adjustment and framedrop logic.

composite-detect

NVIDIA's current VDPAU implementation behaves somewhat differently under a compositing
window manager and does not give accurate frame timing information. With this option enabled,
the player tries to detect whether a compositing window manager is active. If one is detected, the
player disables timing adjustments as if the user had specified fps=-1 (as they would be based
on incorrect input). This means timing is somewhat less accurate than without compositing, but
with the composited mode behavior of the NVIDIA driver, there is no hard playback speed limit
even without the disabled logic. Enabled by default, use no-composite-detect to disable.

queuetime_windowed=<number> and queuetime_fs=<number>

Use VDPAU's presentation queue functionality to queue future video frame changes at most this
many milliseconds in advance (default: 50). See below for additional information.

output_surfaces=<2-15>

Allocate this many output surfaces to display video frames (default: 3). See below for additional
information.

colorkey=<#RRGGBB|#AARRGGBB>

Set the VDPAU presentation queue background color, which in practice is the colorkey used if
VDPAU operates in overlay mode (default: #020507, some shade of black). If the alpha
component of this value is 0, the default VDPAU colorkey will be used instead (which is usually
green).

force-yuv

Never accept RGBA input. This means mpv will insert a filter to convert to a YUV format before
the VO. Sometimes useful to force availability of certain YUV-only features, like video equalizer
or deinterlacing.

Using the VDPAU frame queuing functionality controlled by the queuetime options makes mpv's
frame flip timing less sensitive to system CPU load and allows mpv to start decoding the next
frame(s) slightly earlier, which can reduce jitter caused by individual slow-to-decode frames.
However, the NVIDIA graphics drivers can make other window behavior such as window moves
choppy if VDPAU is using the blit queue (mainly happens if you have the composite extension
enabled) and this feature is active. If this happens on your system and it bothers you then you can set
the queuetime value to 0 to disable this feature. The settings to use in windowed and fullscreen mode
are separate because there should be no reason to disable this for fullscreen mode (as the driver
issue should not affect the video itself).

You can queue more frames ahead by increasing the queuetime values and the output_surfaces
count (to ensure enough surfaces to buffer video for a certain time ahead you need at least as many
surfaces as the video has frames during that time, plus two). This could help make video smoother in
some cases. The main downsides are increased video RAM requirements for the surfaces and
laggier display response to user commands (display changes only become visible some time after
they're queued). The graphics driver implementation may also have limits on the length of maximum
queuing time or number of queued surfaces that work well or at all.

direct3d_shaders (Windows only)

Video output driver that uses the Direct3D interface.

Note

This driver is for compatibility with systems that don't provide proper OpenGL drivers.

prefer-stretchrect

Use IDirect3DDevice9::StretchRect over other methods if possible.

disable-stretchrect

Never render the video using IDirect3DDevice9::StretchRect.

disable-textures

Never render the video using D3D texture rendering. Rendering with textures + shader will still
be allowed. Add disable-shaders to completely disable video rendering with textures.

disable-shaders

Never use shaders when rendering video.

only-8bit

Never render YUV video with more than 8 bits per component. Using this flag will force software
conversion to 8-bit.

disable-texture-align

Normally texture sizes are always aligned to 16. With this option enabled, the video texture will
always have exactly the same size as the video itself.

Debug options. These might be incorrect, might be removed in the future, might crash, might cause
slow downs, etc. Contact the developers if you actually need any of these for performance or proper
operation.

force-power-of-2

Always force textures to power of 2, even if the device reports non-power-of-2 texture sizes as
supported.

texture-memory=<mode>

Only affects operation with shaders/texturing enabled, and (E)OSD. Possible values:

default (default)

Use D3DPOOL_DEFAULT, with a D3DPOOL_SYSTEMMEM texture for locking. If the driver
supports D3DDEVCAPS_TEXTURESYSTEMMEMORY, D3DPOOL_SYSTEMMEM is used directly.

default-pool

Use D3DPOOL_DEFAULT. (Like default, but never use a shadow-texture.)

default-pool-shadow

Use D3DPOOL_DEFAULT, with a D3DPOOL_SYSTEMMEM texture for locking. (Like default,
but always force the shadow-texture.)

managed

Use D3DPOOL_MANAGED.

scratch

Use D3DPOOL_SCRATCH, with a D3DPOOL_SYSTEMMEM texture for locking.

swap-discard

Use D3DSWAPEFFECT_DISCARD, which might be faster. Might be slower too, as it must(?) clear
every frame.

exact-backbuffer

Always resize the backbuffer to window size.

direct3d (Windows only)

Same as direct3d_shaders, but with the options disable-textures and disable-shaders
forced.

Note

This driver is for compatibility with old systems.

opengl

OpenGL video output driver. It supports extended scaling methods, dithering and color management.

By default, it tries to use fast and fail-safe settings. Use the alias opengl-hq to use this driver with
defaults set to high quality rendering.

Requires at least OpenGL 2.1.

Some features are available with OpenGL 3 capable graphics drivers only (or if the necessary
extensions are available).

OpenGL ES 2.0 and 3.0 are supported as well.

Hardware decoding over OpenGL-interop is supported to some degree. Note that in this mode, some
corner case might not be gracefully handled, and color space conversion and chroma upsampling is
generally in the hand of the hardware decoder APIs.

opengl makes use of FBOs by default. Sometimes you can achieve better quality or performance by
changing the fbo-format suboption to rgb16f, rgb32f or rgb. Known problems include
Mesa/Intel not accepting rgb16, Mesa sometimes not being compiled with float texture support, and
some OS X setups being very slow with rgb16 but fast with rgb32f. If you have problems, you can
also try passing the dumb-mode=yes sub-option.

dumb-mode=<yes|no>

This mode is extremely restricted, and will disable most extended OpenGL features. This
includes high quality scalers and custom shaders!

It is intended for hardware that does not support FBOs (including GLES, which supports it
insufficiently), or to get some more performance out of bad or old hardware.

This mode is forced automatically if needed, and this option is mostly useful for debugging.

scale=<filter>

bilinear

Bilinear hardware texture filtering (fastest, very low quality). This is the default for
compatibility reasons.

spline36

Mid quality and speed. This is the default when using opengl-hq.

lanczos

Lanczos scaling. Provides mid quality and speed. Generally worse than spline36, but it
results in a slightly sharper image which is good for some content types. The number of
taps can be controlled with scale-radius, but is best left unchanged.

This filter corresponds to the old lanczos3 alias if the default radius is used, while
lanczos2 corresponds to a radius of 2.

(This filter is an alias for sinc-windowed sinc)

ewa_lanczos

Elliptic weighted average Lanczos scaling. Also known as Jinc. Relatively slow, but very
good quality. The radius can be controlled with scale-radius. Increasing the radius
makes the filter sharper but adds more ringing.

(This filter is an alias for jinc-windowed jinc)

ewa_lanczossharp

A slightly sharpened version of ewa_lanczos, preconfigured to use an ideal radius and
parameter. If your hardware can run it, this is probably what you should use by default.

mitchell

Mitchell-Netravali. The B and C parameters can be set with scale-param1 and
scale-param2. This filter is very good at downscaling (see dscale).

oversample

A version of nearest neighbour that (naively) oversamples pixels, so that pixels overlapping
edges get linearly interpolated instead of rounded. This essentially removes the small
imperfections and judder artifacts caused by nearest-neighbour interpolation, in exchange
for adding some blur. This filter is good at temporal interpolation, and also known as
"smoothmotion" (see tscale).

custom

A user-defined custom shader (see scale-shader).

There are some more filters, but most are not as useful. For a complete list, pass help as
value, e.g.:

mpv --vo=opengl:scale=help

scale-param1=<value>, scale-param2=<value>

Set filter parameters. Ignored if the filter is not tunable. Currently, this affects the following filter
parameters:

bcspline

Spline parameters (B and C). Defaults to 0.5 for both.

gaussian

Scale parameter (t). Increasing this makes the result blurrier. Defaults to 1.

sharpen3, sharpen5

Sharpening strength. Increasing this makes the image sharper but adds more ringing and
aliasing. Defaults to 0.5.

oversample

Minimum distance to an edge before interpolation is used. Setting this to 0 will always
interpolate edges, whereas setting it to 0.5 will never interpolate, thus behaving as if the
regular nearest neighbour algorithm was used. Defaults to 0.0.

scale-blur=<value>

Kernel scaling factor (also known as a blur factor). Decreasing this makes the result sharper,
increasing it makes it blurrier (default 0). If set to 0, the kernel's preferred blur factor is used. Note
that setting this too low (eg. 0.5) leads to bad results. It's generally recommended to stick to
values between 0.8 and 1.2.

scale-radius=<value>

Set radius for filters listed below, must be a float number between 0.5 and 16.0. Defaults to the
filter's preferred radius if not specified.

sinc and derivatives, jinc and derivatives, gaussian, box and triangle

Note that depending on filter implementation details and video scaling ratio, the radius that
actually being used might be different (most likely being increased a bit).

scale-antiring=<value>

Set the antiringing strength. This tries to eliminate ringing, but can introduce other artifacts in the
process. Must be a float number between 0.0 and 1.0. The default value of 0.0 disables
antiringing entirely.

Note that this doesn't affect the special filters bilinear, bicubic_fast or sharpen.

scale-window=<window>

(Advanced users only) Choose a custom windowing function for the kernel. Defaults to the filter's
preferred window if unset. Use scale-window=help to get a list of supported windowing
functions.

scale-wparam=<window>

(Advanced users only) Configure the parameter for the window function given by
scale-window. Ignored if the window is not tunable. Currently, this affects the following window
parameters:

kaiser

Window parameter (alpha). Defaults to 6.33.

blackman

Window parameter (alpha). Defaults to 0.16.

gaussian

Scale parameter (t). Increasing this makes the window wider. Defaults to 1.

scaler-resizes-only

Disable the scaler if the video image is not resized. In that case, bilinear is used instead
whatever is set with scale. Bilinear will reproduce the source image perfectly if no scaling is
performed. Note that this option never affects cscale.

pbo

Enable use of PBOs. This is slightly faster, but can sometimes lead to sporadic and temporary
image corruption (in theory, because reupload is not retried when it fails), and perhaps actually
triggers slower paths with drivers that don't support PBOs properly.

dither-depth=<N|no|auto>

Set dither target depth to N. Default: no.

no

Disable any dithering done by mpv.

auto

Automatic selection. If output bit depth cannot be detected, 8 bits per component are
assumed.

8

Dither to 8 bit output.

Note that the depth of the connected video display device can not be detected. Often, LCD
panels will do dithering on their own, which conflicts with opengl's dithering and leads to ugly
output.

dither-size-fruit=<2-8>

Set the size of the dither matrix (default: 6). The actual size of the matrix is (2^N) x (2^N) for
an option value of N, so a value of 6 gives a size of 64x64. The matrix is generated at startup
time, and a large matrix can take rather long to compute (seconds).

Used in dither=fruit mode only.

dither=<fruit|ordered|no>

Select dithering algorithm (default: fruit). (Normally, the dither-depth option controls whether
dithering is enabled.)

temporal-dither

Enable temporal dithering. (Only active if dithering is enabled in general.) This changes between
8 different dithering pattern on each frame by changing the orientation of the tiled dithering
matrix. Unfortunately, this can lead to flicker on LCD displays, since these have a high reaction
time.

temporal-dither-period=<1-128>

Determines how often the dithering pattern is updated when temporal-dither is in use. 1
(the default) will update on every video frame, 2 on every other frame, etc.

debug

Check for OpenGL errors, i.e. call glGetError(). Also request a debug OpenGL context
(which does nothing with current graphics drivers as of this writing).

interpolation

Reduce stuttering caused by mismatches in the video fps and display refresh rate (also known as
judder).

This essentially attempts to interpolate the missing frames by convoluting the video along the
temporal axis. The filter used can be controlled using the tscale setting.

Note that this relies on vsync to work, see swapinterval for more information.

swapinterval=<n>

Interval in displayed frames between two buffer swaps. 1 is equivalent to enable VSYNC, 0 to
disable VSYNC. Defaults to 1 if not specified.

Note that this depends on proper OpenGL vsync support. On some platforms and drivers, this
only works reliably when in fullscreen mode. It may also require driver-specific hacks if using
multiple monitors, to ensure mpv syncs to the right one. Compositing window managers can also
lead to bad results, as can missing or incorrect display FPS information (see --display-fps).

dscale=<filter>

Like scale, but apply these filters on downscaling instead. If this option is unset, the filter
implied by scale will be applied.

cscale=<filter>

As scale, but for interpolating chroma information. If the image is not subsampled, this option is
ignored entirely.

tscale=<filter>

The filter used for interpolating the temporal axis (frames). This is only used if interpolation
is enabled. The only valid choices for tscale are separable convolution filters (use
tscale=help to get a list). The default is oversample.

Note that the maximum supported filter radius is currently 3, due to limitations in the number of
video textures that can be loaded simultaneously.

tscale-clamp

Clamp the tscale filter kernel's value range to [0-1]. This reduces excessive ringing artifacts in
the temporal domain (which typically manifest themselves as short flashes or fringes of black,
mostly around moving edges) in exchange for potentially adding more blur.

dscale-radius, cscale-radius, tscale-radius, etc.

Set filter parameters for dscale, cscale and tscale, respectively.

See the corresponding options for scale.

linear-scaling

Scale in linear light. It should only be used with a fbo-format that has at least 16 bit precision.

fancy-downscaling

When using convolution based filters, extend the filter size when downscaling. Trades quality for
reduced downscaling performance.

This is automatically disabled for anamorphic video, because this feature doesn't work correctly
with different scale factors in different directions.

pre-shaders=<files>, post-shaders=<files>, scale-shader=<file>

Custom GLSL fragment shaders.

pre-shaders (list)

These get applied after conversion to RGB and before linearization and upscaling. Operates
on non-linear RGB (same as input). This is the best place to put things like sharpen filters.

scale-shader

This gets used instead of scale/cscale when those options are set to custom. The
colorspace it operates on depends on the values of linear-scaling and
sigmoid-upscaling, so no assumptions should be made here.

post-shaders (list)

These get applied after upscaling and subtitle blending (when blend-subtitles is
enabled), but before color management. Operates on linear RGB if linear-scaling is in
effect, otherwise non-linear RGB. This is the best place for colorspace transformations (eg.
saturation mapping).

These files must define a function with the following signature:

vec4 sample(sampler2D tex, vec2 pos, vec2 tex_size)

The meanings of the parameters are as follows:

sampler2D tex

The source texture for the shader.

vec2 pos

The position to be sampled, in coordinate space [0-1].

vec2 tex_size

The size of the texture, in pixels. This may differ from image_size, eg. for subsampled
content or for post-shaders.

In addition to these parameters, the following uniforms are also globally available:

float random

A random number in the range [0-1], different per frame.

int frame

A simple count of frames rendered, increases by one per frame and never resets (regardless
of seeks).

vec2 image_size

The size in pixels of the input image.

For example, a shader that inverts the colors could look like this:

vec4 sample(sampler2D tex, vec2 pos, vec2 tex_size)
{
 vec4 color = texture(tex, pos);
 return vec4(1.0 - color.rgb, color.a);
}

deband

Enable the debanding algorithm. This greatly reduces the amount of visible banding, blocking
and other quantization artifacts, at the expensive of very slightly blurring some of the finest
details. In practice, it's virtually always an improvement - the only reason to disable it would be
for performance.

deband-iterations=<1..16>

The number of debanding steps to perform per sample. Each step reduces a bit more banding,
but takes time to compute. Note that the strength of each step falls off very quickly, so high
numbers are practically useless. (Default 4)

If the performance hit of debanding is too great, you can reduce this to 2 or 1 with marginal visual
quality loss.

deband-threshold=<0..4096>

The debanding filter's cut-off threshold. Higher numbers increase the debanding strength
dramatically but progressively diminish image details. (Default 64)

deband-range=<1..64>

The debanding filter's initial radius. The radius increases linearly for each iteration. A higher
radius will find more gradients, but a lower radius will smooth more aggressively. (Default 8)

deband-grain=<0..4096>

Add some extra noise to the image. This significantly helps cover up remaining quantization
artifacts. Higher numbers add more noise. (Default 48)

sigmoid-upscaling

When upscaling, use a sigmoidal color transform to avoid emphasizing ringing artifacts. This also
implies linear-scaling.

sigmoid-center

The center of the sigmoid curve used for sigmoid-upscaling, must be a float between 0.0
and 1.0. Defaults to 0.75 if not specified.

sigmoid-slope

The slope of the sigmoid curve used for sigmoid-upscaling, must be a float between 1.0 and
20.0. Defaults to 6.5 if not specified.

glfinish

Call glFinish() before and after swapping buffers (default: disabled). Slower, but might help
getting better results when doing framedropping. Can completely ruin performance. The details
depend entirely on the OpenGL driver.

waitvsync

Call glXWaitVideoSyncSGI after each buffer swap (default: disabled). This may or may not
help with video timing accuracy and frame drop. It's possible that this makes video output slower,
or has no effect at all.

X11/GLX only.

dwmflush=<no|windowed|yes>

Calls DwmFlush after swapping buffers on Windows (default: no). It also sets
SwapInterval(0) to ignore the OpenGL timing. Values are: no (disabled), windowed (only in
windowed mode), yes (also in full screen). This may help getting more consistent frame intervals,
especially with high-fps clips - which might also reduce dropped frames. Typically a value of
windowed should be enough since full screen may bypass the DWM.

Windows only.

sw

Continue even if a software renderer is detected.

backend=<sys>

The value auto (the default) selects the windowing backend. You can also pass help to get
a complete list of compiled in backends (sorted by autoprobe order).

auto

auto-select (default)

cocoa

Cocoa/OS X

win

Win32/WGL

x11

X11/GLX

wayland

Wayland/EGL

x11egl

X11/EGL

es

Force or prefer GLES2/3 over desktop OpenGL, if supported.

fbo-format=<fmt>

Selects the internal format of textures used for FBOs. The format can influence performance and
quality of the video output. fmt can be one of: rgb, rgba, rgb8, rgb10, rgb10_a2, rgb16, rgb16f,
rgb32f, rgba12, rgba16, rgba16f, rgba32f. Default: rgba16.

gamma=<0.1..2.0>

Set a gamma value (default: 1.0). If gamma is adjusted in other ways (like with the --gamma
option or key bindings and the gamma property), the value is multiplied with the other gamma
value.

Recommended values based on the environmental brightness:

1.0

Brightly illuminated (default)

0.9

Slightly dim

0.8

Pitch black room

gamma-auto

Automatically corrects the gamma value depending on ambient lighting conditions (adding a
gamma boost for dark rooms).

With ambient illuminance of 64lux, mpv will pick the 1.0 gamma value (no boost), and slightly
increase the boost up until 0.8 for 16lux.

NOTE: Only implemented on OS X.

target-prim=<value>

Specifies the primaries of the display. Video colors will be adapted to this colorspace if
necessary. Valid values are:

auto

Disable any adaptation (default)

bt.470m

ITU-R BT.470 M

bt.601-525

ITU-R BT.601 (525-line SD systems, eg. NTSC), SMPTE 170M/240M

bt.601-625

ITU-R BT.601 (625-line SD systems, eg. PAL/SECAM), ITU-R BT.470 B/G

bt.709

ITU-R BT.709 (HD), IEC 61966-2-4 (sRGB), SMPTE RP177 Annex B

bt.2020

ITU-R BT.2020 (UHD)

apple

Apple RGB

adobe

Adobe RGB (1998)

prophoto

ProPhoto RGB (ROMM)

cie1931

CIE 1931 RGB (not to be confused with CIE XYZ)

target-trc=<value>

Specifies the transfer characteristics (gamma) of the display. Video colors will be adjusted to this
curve. Valid values are:

auto

Disable any adaptation (default)

bt.1886

ITU-R BT.1886 curve, without the brightness drop (approx. 1.961)

srgb

IEC 61966-2-4 (sRGB)

linear

Linear light output

gamma1.8

Pure power curve (gamma 1.8), also used for Apple RGB

gamma2.2

Pure power curve (gamma 2.2)

gamma2.8

Pure power curve (gamma 2.8), also used for BT.470-BG

prophoto

ProPhoto RGB (ROMM)

icc-profile=<file>

Load an ICC profile and use it to transform linear RGB to screen output. Needs LittleCMS 2
support compiled in. This option overrides the target-prim, target-trc and
icc-profile-auto options.

icc-profile-auto

Automatically select the ICC display profile currently specified by the display settings of the
operating system.

NOTE: Only implemented on OS X and X11

icc-cache-dir=<dirname>

Store and load the 3D LUTs created from the ICC profile in this directory. This can be used to
speed up loading, since LittleCMS 2 can take a while to create a 3D LUT. Note that these files
contain uncompressed LUTs. Their size depends on the 3dlut-size, and can be very big.

NOTE: This is not cleaned automatically, so old, unused cache files may stick around indefinitely.

icc-intent=<value>

Specifies the ICC intent used for the color transformation (when using icc-profile).

0

perceptual

1

relative colorimetric (default)

2

saturation

3

absolute colorimetric

3dlut-size=<r>x<g>x

Size of the 3D LUT generated from the ICC profile in each dimension. Default is 128x256x64.
Sizes must be a power of two, and 512 at most.

blend-subtitles=<yes|video|no>

Blend subtitles directly onto upscaled video frames, before interpolation and/or color
management (default: no). Enabling this causes subtitles to be affected by icc-profile,
target-prim, target-trc, interpolation, gamma and post-shader. It also increases
subtitle performance when using interpolation.

The downside of enabling this is that it restricts subtitles to the visible portion of the video, so you
can't have subtitles exist in the black margins below a video (for example).

If video is selected, the behavior is similar to yes, but subs are drawn at the video's native
resolution, and scaled along with the video.

Warning

This changes the way subtitle colors are handled. Normally, subtitle colors are assumed
to be in sRGB and color managed as such. Enabling this makes them treated as being in
the video's color space instead. This is good if you want things like softsubbed ASS signs
to match the video colors, but may cause SRT subtitles or similar to look slightly off.

alpha=<blend|yes|no>

Decides what to do if the input has an alpha component (default: blend).

blend

Blend the frame against a black background.

yes

Try to create a framebuffer with alpha component. This only makes sense if the video
contains alpha information (which is extremely rare). May not be supported on all platforms.
If alpha framebuffers are unavailable, it silently falls back on a normal framebuffer. Note that
if you set the fbo-format option to a non-default value, a format with alpha must be
specified, or this won't work.

no

Ignore alpha component.

rectangle-textures

Force use of rectangle textures (default: no). Normally this shouldn't have any advantages over
normal textures. Note that hardware decoding overrides this flag.

background=<color>

Color used to draw parts of the mpv window not covered by video. See --osd-color option
how colors are defined.

opengl-hq

Same as opengl, but with default settings for high quality rendering.

This is equivalent to:

--vo=opengl:scale=spline36:cscale=spline36:dscale=mitchell:dither-depth=auto:fancy-downscaling:sigmoid-upscaling:pbo:deband

Note that some cheaper LCDs do dithering that gravely interferes with opengl's dithering. Disabling
dithering with dither-depth=no helps.

sdl

SDL 2.0+ Render video output driver, depending on system with or without hardware acceleration.
Should work on all platforms supported by SDL 2.0. For tuning, refer to your copy of the file
SDL_hints.h.

Note

This driver is for compatibility with systems that don't provide proper graphics drivers, or which
support GLES only.

sw

Continue even if a software renderer is detected.

switch-mode

Instruct SDL to switch the monitor video mode when going fullscreen.

vaapi

Intel VA API video output driver with support for hardware decoding. Note that there is absolutely no
reason to use this, other than wanting to use hardware decoding to save power on laptops, or
possibly preventing video tearing with some setups.

Note

This driver is for compatibility with crappy systems. You can use vaapi hardware decoding
with --vo=opengl too.

scaling=<algorithm>

default

Driver default (mpv default as well).

fast

Fast, but low quality.

hq

Unspecified driver dependent high-quality scaling, slow.

nla

non-linear anamorphic scaling

deint-mode=<mode>

Select deinterlacing algorithm. Note that by default deinterlacing is initially always off, and needs
to be enabled with the D key (default key binding for cycle deinterlace).

This option doesn't apply if libva supports video post processing (vpp). In this case, the default
for deint-mode is no, and enabling deinterlacing via user interaction using the methods
mentioned above actually inserts the vavpp video filter. If vpp is not actually supported with the
libva backend in use, you can use this option to forcibly enable VO based deinterlacing.

no

Don't allow deinterlacing (default for newer libva).

first-field

Show only first field (going by --field-dominance).

bob

bob deinterlacing (default for older libva).

scaled-osd=<yes|no>

If enabled, then the OSD is rendered at video resolution and scaled to display resolution. By
default, this is disabled, and the OSD is rendered at display resolution if the driver supports it.

null

Produces no video output. Useful for benchmarking.

Usually, it's better to disable video with --no-video instead.

fps=<value>

Simulate display FPS. This artificially limits how many frames the VO accepts per second.

caca

Color ASCII art video output driver that works on a text console.

Note

This driver is a joke.

image

Output each frame into an image file in the current directory. Each file takes the frame number
padded with leading zeros as name.

format=<format>

Select the image file format.

jpg

JPEG files, extension .jpg. (Default.)

jpeg

JPEG files, extension .jpeg.

png

PNG files.

ppm

Portable bitmap format.

pgm

Portable graymap format.

pgmyuv

Portable graymap format, using the YV12 pixel format.

tga

Truevision TGA.

png-compression=<0-9>

PNG compression factor (speed vs. file size tradeoff) (default: 7)

png-filter=<0-5>

Filter applied prior to PNG compression (0 = none; 1 = sub; 2 = up; 3 = average; 4 = Paeth; 5 =
mixed) (default: 5)

jpeg-quality=<0-100>

JPEG quality factor (default: 90)

(no-)jpeg-progressive

Specify standard or progressive JPEG (default: no).

(no-)jpeg-baseline

Specify use of JPEG baseline or not (default: yes).

jpeg-optimize=<0-100>

JPEG optimization factor (default: 100)

jpeg-smooth=<0-100>

smooth factor (default: 0)

jpeg-dpi=<1->

JPEG DPI (default: 72)

outdir=<dirname>

Specify the directory to save the image files to (default: ./).

wayland (Wayland only)

Wayland shared memory video output as fallback for opengl.

Note

This driver is for compatibility with systems that don't provide working OpenGL drivers.

alpha

Use a buffer format that supports videos and images with alpha information

rgb565

Use RGB565 as buffer format. This format is implemented on most platforms, especially on
embedded where it is far more efficient then RGB8888.

triple-buffering

Use 3 buffers instead of 2. This can lead to more fluid playback, but uses more memory.

opengl-cb

For use with libmpv direct OpenGL embedding; useless in any other contexts. (See
<mpv/opengl_cb.h>.) Usually, opengl-cb renders frames asynchronously by client and this can
cause some frame drops. In order to provide a way to handle this situation, opengl-cb has its own
frame queue and calls update callback more frequently if the queue is not empty regardless of
existence of new frame. Once the queue is filled, opengl-cb drops frames automatically.

With default options, opengl-cb renders only the latest frame and drops all frames handed over
while waiting render function after update callback.

frame-queue-size=<1..100>

The maximum count of frames which the frame queue can hold (default: 1)

frame-drop-mode=<pop|clear|block>

Select the behavior when the frame queue is full.

pop

Drop the oldest frame in the frame queue.

clear

Drop all frames in the frame queue.

block

Wait for a short time, behave like clear on timeout. (default)

This also supports many of the suboptions the opengl VO has. Run
mpv --vo=opengl-cb:help for a list.

This also supports the vo_cmdline command.

rpi (Raspberry Pi)

Native video output on the Raspberry Pi using the MMAL API.

display=<number>

Select the display number on which the video overlay should be shown (default: 0).

layer=<number>

Select the dispmanx layer on which the video overlay should be shown (default: -10). Note that
mpv will also use the 2 layers above the selected layer, to handle the window background and
OSD. Actual video rendering will happen on the layer above the selected layer.

background=<yes|no>

Whether to render a black background behind the video (default: no). Normally it's better to kill
the console framebuffer instead, which gives better performance.

drm (Direct Rendering Manager)

Video output driver using Kernel Mode Setting / Direct Rendering Manager. Does not support
hardware acceleration. Should be used when one doesn't want to install full-blown graphical
environment (e.g. no X).

connector=<number>

Select the connector to use (usually this is a monitor.) If set to -1, mpv renders the output on the
first available connector. (default: -1)

devpath=<filename>

Path to graphic card device. (default: /dev/dri/card0)

mode=<number>

Mode ID to use (resolution, bit depth and frame rate). (default: 0)

AUDIO FILTERS
Audio filters allow you to modify the audio stream and its properties. The syntax is:

--af=<filter1[=parameter1:parameter2:...],filter2,...>

Setup a chain of audio filters.

Note

To get a full list of available audio filters, see --af=help.

Also, keep in mind that most actual filters are available via the lavfi wrapper, which gives you
access to most of libavfilter's filters. This includes all filters that have been ported from MPlayer to
libavfilter.

You can also set defaults for each filter. The defaults are applied before the normal filter parameters.

--af-defaults=<filter1[=parameter1:parameter2:...],filter2,...>

Set defaults for each filter.

Audio filters are managed in lists. There are a few commands to manage the filter list:

--af-add=<filter1[,filter2,...]>

Appends the filters given as arguments to the filter list.

--af-pre=<filter1[,filter2,...]>

Prepends the filters given as arguments to the filter list.

--af-del=<index1[,index2,...]>

Deletes the filters at the given indexes. Index numbers start at 0, negative numbers address the end
of the list (-1 is the last).

--af-clr

Completely empties the filter list.

Available filters are:

lavrresample[=option1:option2:...]

This filter uses libavresample (or libswresample, depending on the build) to change sample rate,
sample format, or channel layout of the audio stream. This filter is automatically enabled if the audio
output does not support the audio configuration of the file being played.

It supports only the following sample formats: u8, s16, s32, float.

filter-size=<length>

Length of the filter with respect to the lower sampling rate. (default: 16)

phase-shift=<count>

Log2 of the number of polyphase entries. (..., 10->1024, 11->2048, 12->4096, ...) (default:
10->1024)

cutoff=<cutoff>

Cutoff frequency (0.0-1.0), default set depending upon filter length.

linear

If set then filters will be linearly interpolated between polyphase entries. (default: no)

no-detach

Do not detach if input and output audio format/rate/channels match. (If you just want to set
defaults for this filter that will be used even by automatically inserted lavrresample instances, you
should prefer setting them with --af-defaults=lavrresample:....)

normalize=<yes|no>

Whether to normalize when remixing channel layouts (default: yes). This is e.g. applied when
downmixing surround audio to stereo. The advantage is that this guarantees that no clipping can
happen. Unfortunately, this can also lead to too low volume levels. Whether you enable or
disable this is essentially a matter of taste, but the default uses the safer choice.

o=<string>

Set AVOptions on the SwrContext or AVAudioResampleContext. These should be documented
by FFmpeg or Libav.

lavcac3enc[=tospdif[:bitrate[:minch]]]

Encode multi-channel audio to AC-3 at runtime using libavcodec. Supports 16-bit native-endian input
format, maximum 6 channels. The output is big-endian when outputting a raw AC-3 stream,
native-endian when outputting to S/PDIF. If the input sample rate is not 48 kHz, 44.1 kHz or 32 kHz, it
will be resampled to 48 kHz.

tospdif=<yes|no>

Output raw AC-3 stream if no, output to S/PDIF for pass-through if yes (default).

bitrate=<rate>

The bitrate use for the AC-3 stream. Set it to 384 to get 384 kbps.

The default is 640. Some receivers might not be able to handle this.

Valid values: 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384, 448, 512, 576,
640.

The special value auto selects a default bitrate based on the input channel number:

1ch: 96

2ch: 192

3ch: 224

4ch: 384

5ch: 448

6ch: 448

minch=<n>

If the input channel number is less than <minch>, the filter will detach itself (default: 3).

equalizer=g1:g2:g3:...:g10

10 octave band graphic equalizer, implemented using 10 IIR band-pass filters. This means that it
works regardless of what type of audio is being played back. The center frequencies for the 10 bands
are:

No. frequency

0 31.25 Hz

1 62.50 Hz

2 125.00 Hz

3 250.00 Hz

4 500.00 Hz

5 1.00 kHz

6 2.00 kHz

7 4.00 kHz

8 8.00 kHz

9 16.00 kHz

If the sample rate of the sound being played is lower than the center frequency for a frequency band,
then that band will be disabled. A known bug with this filter is that the characteristics for the
uppermost band are not completely symmetric if the sample rate is close to the center frequency of
that band. This problem can be worked around by upsampling the sound using a resampling filter
before it reaches this filter.

<g1>:<g2>:<g3>:...:<g10>

floating point numbers representing the gain in dB for each frequency band (-12-12)

Example

mpv --af=equalizer=11:11:10:5:0:-12:0:5:12:12 media.avi

Would amplify the sound in the upper and lower frequency region while canceling it
almost completely around 1 kHz.

channels=nch[:routes]

Can be used for adding, removing, routing and copying audio channels. If only <nch> is given, the
default routing is used. It works as follows: If the number of output channels is greater than the
number of input channels, empty channels are inserted (except when mixing from mono to stereo;
then the mono channel is duplicated). If the number of output channels is less than the number of
input channels, the exceeding channels are truncated.

<nch>

number of output channels (1-8)

<routes>

List of , separated routes, in the form from1-to1,from2-to2,.... Each pair defines where
to route each channel. There can be at most 8 routes. Without this argument, the default routing
is used. Since , is also used to separate filters, you must quote this argument with [...] or
similar.

Examples

mpv --af=channels=4:[0-1,1-0,0-2,1-3] media.avi

Would change the number of channels to 4 and set up 4 routes that swap channel 0 and
channel 1 and leave channel 2 and 3 intact. Observe that if media containing two
channels were played back, channels 2 and 3 would contain silence but 0 and 1 would
still be swapped.

mpv --af=channels=6:[0-0,0-1,0-2,0-3] media.avi

Would change the number of channels to 6 and set up 4 routes that copy channel 0 to
channels 0 to 3. Channel 4 and 5 will contain silence.

Note

You should probably not use this filter. If you want to change the output channel layout, try the
format filter, which can make mpv automatically up- and downmix standard channel layouts.

format=format:srate:channels:out-format:out-srate:out-channels

Does not do any format conversion itself. Rather, it may cause the filter system to insert necessary
conversion filters before or after this filter if needed. It is primarily useful for controlling the audio
format going into other filters. To specify the format for audio output, see --audio-format,
--audio-samplerate, and --audio-channels. This filter is able to force a particular format,
whereas --audio-* may be overridden by the ao based on output compatibility.

All parameters are optional. The first 3 parameters restrict what the filter accepts as input. They will
therefore cause conversion filters to be inserted before this one. The out- parameters tell the
filters or audio outputs following this filter how to interpret the data without actually doing a

conversion. Setting these will probably just break things unless you really know you want this for
some reason, such as testing or dealing with broken media.

<format>

Force conversion to this format. Use --af=format=format=help to get a list of valid formats.

<srate>

Force conversion to a specific sample rate. The rate is an integer, 48000 for example.

<channels>

Force mixing to a specific channel layout. See --audio-channels option for possible values.

<out-format>

<out-srate>

<out-channels>

NOTE: this filter used to be named force. The old format filter used to do conversion itself, unlike
this one which lets the filter system handle the conversion.

volume[=<volumedb>[:...]]

Implements software volume control. Use this filter with caution since it can reduce the signal to noise
ratio of the sound. In most cases it is best to use the Master volume control of your sound card or the
volume knob on your amplifier.

NOTE: This filter is not reentrant and can therefore only be enabled once for every audio stream.

<volumedb>

Sets the desired gain in dB for all channels in the stream from -200 dB to +60 dB, where -200 dB
mutes the sound completely and +60 dB equals a gain of 1000 (default: 0).

replaygain-track

Adjust volume gain according to the track-gain replaygain value stored in the file metadata.

replaygain-album

Like replaygain-track, but using the album-gain value instead.

replaygain-preamp

Pre-amplification gain in dB to apply to the selected replaygain gain (default: 0).

replaygain-clip=yes|no

Prevent clipping caused by replaygain by automatically lowering the gain (default). Use
replaygain-clip=no to disable this.

replaygain-fallback

Gain in dB to apply if the file has no replay gain tags. This option is always applied if the
replaygain logic is somehow inactive. If this is applied, no other replaygain options are applied.

softclip

Turns soft clipping on. Soft-clipping can make the sound more smooth if very high volume levels
are used. Enable this option if the dynamic range of the loudspeakers is very low.

WARNING: This feature creates distortion and should be considered a last resort.

s16

Force S16 sample format if set. Lower quality, but might be faster in some situations.

detach

Remove the filter if the volume is not changed at audio filter config time. Useful with replaygain: if
the current file has no replaygain tags, then the filter will be removed if this option is enabled. (If
--softvol=yes is used and the player volume controls are used during playback, a different
volume filter will be inserted.)

Example

mpv --af=volume=10.1 media.avi

Would amplify the sound by 10.1 dB and hard-clip if the sound level is too high.

pan=n:[<matrix>]

Mixes channels arbitrarily. Basically a combination of the volume and the channels filter that can be
used to down-mix many channels to only a few, e.g. stereo to mono, or vary the "width" of the center
speaker in a surround sound system. This filter is hard to use, and will require some tinkering before
the desired result is obtained. The number of options for this filter depends on the number of output
channels. An example how to downmix a six-channel file to two channels with this filter can be found
in the examples section near the end.

<n>

Number of output channels (1-8).

<matrix>

A list of values [L00,L01,L02,...,L10,L11,L12,...,Ln0,Ln1,Ln2,...], where each
element Lij means how much of input channel i is mixed into output channel j (range 0-1). So
in principle you first have n numbers saying what to do with the first input channel, then n
numbers that act on the second input channel etc. If you do not specify any numbers for some
input channels, 0 is assumed. Note that the values are separated by ,, which is already used by
the option parser to separate filters. This is why you must quote the value list with [...] or
similar.

Examples

mpv --af=pan=1:[0.5,0.5] media.avi

Would downmix from stereo to mono.

mpv --af=pan=3:[1,0,0.5,0,1,0.5] media.avi

Would give 3 channel output leaving channels 0 and 1 intact, and mix channels 0 and 1
into output channel 2 (which could be sent to a subwoofer for example).

Note

If you just want to force remixing to a certain output channel layout, it is easier to use the
format filter. For example,
mpv '--af=format=channels=5.1' '--audio-channels=5.1' would always force
remixing audio to 5.1 and output it like this.

delay[=[ch1,ch2,...]]

Delays the sound to the loudspeakers such that the sound from the different channels arrives at the
listening position simultaneously. It is only useful if you have more than 2 loudspeakers.

[ch1,ch2,...]

The delay in ms that should be imposed on each channel (floating point number between 0 and
1000).

To calculate the required delay for the different channels, do as follows:

1. Measure the distance to the loudspeakers in meters in relation to your listening position, giving
you the distances s1 to s5 (for a 5.1 system). There is no point in compensating for the
subwoofer (you will not hear the difference anyway).

2. Subtract the distances s1 to s5 from the maximum distance, i.e.
s[i] = max(s) - s[i]; i = 1...5.

3. Calculate the required delays in ms as d[i] = 1000*s[i]/342; i = 1...5.

Example

mpv --af=delay=[10.5,10.5,0,0,7,0] media.avi

Would delay front left and right by 10.5 ms, the two rear channels and the subwoofer by 0
ms and the center channel by 7 ms.

drc[=method:target]

Applies dynamic range compression. This maximizes the volume by compressing the audio signal's
dynamic range. (Formerly called volnorm.)

<method>

Sets the used method.

1

Use a single sample to smooth the variations via the standard weighted mean over past
samples (default).

2

Use several samples to smooth the variations via the standard weighted mean over past
samples.

<target>

Sets the target amplitude as a fraction of the maximum for the sample type (default: 0.25).

Note

This filter can cause distortion with audio signals that have a very large dynamic range.

scaletempo[=option1:option2:...]

Scales audio tempo without altering pitch, optionally synced to playback speed (default).

This works by playing 'stride' ms of audio at normal speed then consuming 'stride*scale' ms of input
audio. It pieces the strides together by blending 'overlap'% of stride with audio following the previous
stride. It optionally performs a short statistical analysis on the next 'search' ms of audio to determine
the best overlap position.

scale=<amount>

Nominal amount to scale tempo. Scales this amount in addition to speed. (default: 1.0)

stride=<amount>

Length in milliseconds to output each stride. Too high of a value will cause noticeable skips at
high scale amounts and an echo at low scale amounts. Very low values will alter pitch.
Increasing improves performance. (default: 60)

overlap=<percent>

Percentage of stride to overlap. Decreasing improves performance. (default: .20)

search=<amount>

Length in milliseconds to search for best overlap position. Decreasing improves performance
greatly. On slow systems, you will probably want to set this very low. (default: 14)

speed=<tempo|pitch|both|none>

Set response to speed change.

tempo

Scale tempo in sync with speed (default).

pitch

Reverses effect of filter. Scales pitch without altering tempo. Add this to your input.conf
to step by musical semi-tones:

[multiply speed 0.9438743126816935
] multiply speed 1.059463094352953

Warning

Loses sync with video.

both

Scale both tempo and pitch.

none

Ignore speed changes.

Examples

mpv --af=scaletempo --speed=1.2 media.ogg

Would play media at 1.2x normal speed, with audio at normal pitch. Changing playback
speed would change audio tempo to match.

mpv --af=scaletempo=scale=1.2:speed=none --speed=1.2 media.ogg

Would play media at 1.2x normal speed, with audio at normal pitch, but changing
playback speed would have no effect on audio tempo.

mpv --af=scaletempo=stride=30:overlap=.50:search=10 media.ogg

Would tweak the quality and performance parameters.

mpv --af=format=float,scaletempo media.ogg

Would make scaletempo use float code. Maybe faster on some platforms.

mpv --af=scaletempo=scale=1.2:speed=pitch audio.ogg

Would play media at 1.2x normal speed, with audio at normal pitch. Changing playback
speed would change pitch, leaving audio tempo at 1.2x.

rubberband

High quality pitch correction with librubberband. This can be used in place of scaletempo, and will
be used to adjust audio pitch when playing at speed different from normal.

This filter has a number of sub-options. You can list them with mpv --af=rubberband=help. This
will also show the default values for each option. The options are not documented here, because they
are merely passed to librubberband. Look at the librubberband documentation to learn what each
option does:
http://breakfastquay.com/rubberband/code-doc/classRubberBand_1_1RubberBandStretcher.html
(The mapping of the mpv rubberband filter sub-option names and values to those of librubberband
follows a simple pattern: "Option" + Name + Value.)

lavfi=graph

Filter audio using FFmpeg's libavfilter.

<graph>

Libavfilter graph. See lavfi video filter for details - the graph syntax is the same.

Warning

Don't forget to quote libavfilter graphs as described in the lavfi video filter section.

o=<string>

AVOptions.

VIDEO FILTERS
Video filters allow you to modify the video stream and its properties. The syntax is:

--vf=<filter1[=parameter1:parameter2:...],filter2,...>

Setup a chain of video filters.

You can also set defaults for each filter. The defaults are applied before the normal filter parameters.

--vf-defaults=<filter1[=parameter1:parameter2:...],filter2,...>

Set defaults for each filter.

Note

To get a full list of available video filters, see --vf=help.

Also, keep in mind that most actual filters are available via the lavfi wrapper, which gives you
access to most of libavfilter's filters. This includes all filters that have been ported from MPlayer to
libavfilter.

Video filters are managed in lists. There are a few commands to manage the filter list.

--vf-add=<filter1[,filter2,...]>

Appends the filters given as arguments to the filter list.

--vf-pre=<filter1[,filter2,...]>

Prepends the filters given as arguments to the filter list.

--vf-del=<index1[,index2,...]>

Deletes the filters at the given indexes. Index numbers start at 0, negative numbers address the end
of the list (-1 is the last).

--vf-clr

Completely empties the filter list.

http://breakfastquay.com/rubberband/code-doc/classRubberBand_1_1RubberBandStretcher.html

With filters that support it, you can access parameters by their name.

--vf=<filter>=help

Prints the parameter names and parameter value ranges for a particular filter.

--vf=<filter=named_parameter1=value1[:named_parameter2=value2:...]>

Sets a named parameter to the given value. Use on and off or yes and no to set flag parameters.

Available filters are:

crop[=w:h:x:y]

Crops the given part of the image and discards the rest. Useful to remove black bands from
widescreen videos.

<w>,<h>

Cropped width and height, defaults to original width and height.

<x>,<y>

Position of the cropped picture, defaults to center.

expand[=w:h:x:y:aspect:round]

Expands (not scales) video resolution to the given value and places the unscaled original at
coordinates x, y.

<w>,<h>

Expanded width,height (default: original width,height). Negative values for w and h are treated as
offsets to the original size.

Example

expand=0:-50:0:0

Adds a 50 pixel border to the bottom of the picture.

<x>,<y>

position of original image on the expanded image (default: center)

<aspect>

Expands to fit an aspect instead of a resolution (default: 0).

Example

expand=800::::4/3

Expands to 800x600, unless the source is higher resolution, in which case it expands
to fill a 4/3 aspect.

<round>

Rounds up to make both width and height divisible by <r> (default: 1).

flip

Flips the image upside down.

mirror

Mirrors the image on the Y axis.

rotate[=0|90|180|270]

Rotates the image by a multiple of 90 degrees clock-wise.

scale[=w:h:param:param2:chr-drop:noup:arnd

Scales the image with the software scaler (slow) and performs a YUV<->RGB color space conversion
(see also --sws).

All parameters are optional.

<w>:<h>

scaled width/height (default: original width/height)

0: scaled d_width/d_height

-1: original width/height

-2: Calculate w/h using the other dimension and the prescaled aspect ratio.

-3: Calculate w/h using the other dimension and the original aspect ratio.

-(n+8): Like -n above, but rounding the dimension to the closest multiple of 16.

<param>[:<param2>] (see also --sws)

Set some scaling parameters depending on the type of scaler selected with --sws:

--sws=2 (bicubic): B (blurring) and C (ringing)
 0.00:0.60 default
 0.00:0.75 VirtualDub's "precise bicubic"
 0.00:0.50 Catmull-Rom spline
 0.33:0.33 Mitchell-Netravali spline
 1.00:0.00 cubic B-spline

--sws=7 (Gaussian): sharpness (0 (soft) - 100 (sharp))

--sws=9 (Lanczos): filter length (1-10)

<chr-drop>

chroma skipping

0: Use all available input lines for chroma (default).

1: Use only every 2. input line for chroma.

2: Use only every 4. input line for chroma.

3: Use only every 8. input line for chroma.

<noup>

Disallow upscaling past the original dimensions.

0: Allow upscaling (default).

1: Disallow upscaling if one dimension exceeds its original value.

2: Disallow upscaling if both dimensions exceed their original values.

<arnd>

Accurate rounding for the vertical scaler, which may be faster or slower than the default
rounding.

no: Disable accurate rounding (default).

yes: Enable accurate rounding.

dsize[=w:h:aspect-method:r:aspect]

Changes the intended display size/aspect at an arbitrary point in the filter chain. Aspect can be given
as a fraction (4/3) or floating point number (1.33). Alternatively, you may specify the exact display
width and height desired. Note that this filter does not do any scaling itself; it just affects what later
scalers (software or hardware) will do when auto-scaling to the correct aspect.

<w>,<h>

New display width and height.

Can also be these special values:

0: original display width and height

-1: original video width and height (default)

-2: Calculate w/h using the other dimension and the original display aspect
ratio.

-3: Calculate w/h using the other dimension and the original video aspect ratio.

Example

dsize=800:-2

Specifies a display resolution of 800x600 for a 4/3 aspect video, or 800x450 for a
16/9 aspect video.

<aspect-method>

Modifies width and height according to original aspect ratios.

-1: Ignore original aspect ratio (default).

0: Keep display aspect ratio by using <w> and <h> as maximum resolution.

1: Keep display aspect ratio by using <w> and <h> as minimum resolution.

2: Keep video aspect ratio by using <w> and <h> as maximum resolution.

3: Keep video aspect ratio by using <w> and <h> as minimum resolution.

Example

dsize=800:600:0

Specifies a display resolution of at most 800x600, or smaller, in order to keep aspect.

<r>

Rounds up to make both width and height divisible by <r> (default: 1).

<aspect>

Force an aspect ratio.

format=fmt=<value>:colormatrix=<value>:...

Restricts the color space for the next filter without doing any conversion. Use together with the scale
filter for a real conversion.

Note

For a list of available formats, see format=fmt=help.

<fmt>

Format name, e.g. rgb15, bgr24, 420p, etc. (default: don't change).

<outfmt>

Format name that should be substituted for the output. If they do not have the same bytes per
pixel and chroma subsamplimg, it will fail.

<colormatrix>

Controls the YUV to RGB color space conversion when playing video. There are various
standards. Normally, BT.601 should be used for SD video, and BT.709 for HD video. (This is
done by default.) Using incorrect color space results in slightly under or over saturated and
shifted colors.

These options are not always supported. Different video outputs provide varying degrees of
support. The opengl and vdpau video output drivers usually offer full support. The xv output
can set the color space if the system video driver supports it, but not input and output levels. The
scale video filter can configure color space and input levels, but only if the output format is RGB
(if the video output driver supports RGB output, you can force this with
-vf scale,format=rgba).

If this option is set to auto (which is the default), the video's color space flag will be used. If that
flag is unset, the color space will be selected automatically. This is done using a simple heuristic
that attempts to distinguish SD and HD video. If the video is larger than 1279x576 pixels, BT.709
(HD) will be used; otherwise BT.601 (SD) is selected.

Available color spaces are:

auto: automatic selection (default)

bt.601: ITU-R BT.601 (SD)

bt.709: ITU-R BT.709 (HD)

bt.2020-ncl: ITU-R BT.2020 non-constant luminance system

bt.2020-cl: ITU-R BT.2020 constant luminance system

smpte-240m: SMPTE-240M

<colorlevels>

YUV color levels used with YUV to RGB conversion. This option is only necessary when playing
broken files which do not follow standard color levels or which are flagged wrong. If the video
does not specify its color range, it is assumed to be limited range.

The same limitations as with <colormatrix> apply.

Available color ranges are:

auto: automatic selection (normally limited range) (default)

limited: limited range (16-235 for luma, 16-240 for chroma)

full: full range (0-255 for both luma and chroma)

<outputlevels>

RGB color levels used with YUV to RGB conversion. Normally, output devices such as PC
monitors use full range color levels. However, some TVs and video monitors expect studio RGB
levels. Providing full range output to a device expecting studio level input results in crushed
blacks and whites, the reverse in dim gray blacks and dim whites.

The same limitations as with <colormatrix> apply.

Available color ranges are:

auto: automatic selection (equals to full range) (default)

limited: limited range (16-235 per component), studio levels

full: full range (0-255 per component), PC levels

Note

It is advisable to use your graphics driver's color range option instead, if available.

<primaries>

RGB primaries the source file was encoded with. Normally this should be set in the file
header, but when playing broken or mistagged files this can be used to override the setting.

This option only affects video output drivers that perform color management, for example
opengl with the target-prim or icc-profile suboptions set.

If this option is set to auto (which is the default), the video's primaries flag will be used. If
that flag is unset, the color space will be selected automatically, using the following
heuristics: If the <colormatrix> is set or determined as BT.2020 or BT.709, the
corresponding primaries are used. Otherwise, if the video height is exactly 576 (PAL),
BT.601-625 is used. If it's exactly 480 or 486 (NTSC), BT.601-525 is used. If the video
resolution is anything else, BT.709 is used.

Available primaries are:

auto: automatic selection (default)

bt.601-525: ITU-R BT.601 (SD) 525-line systems (NTSC, SMPTE-C)

bt.601-625: ITU-R BT.601 (SD) 625-line systems (PAL, SECAM)

bt.709: ITU-R BT.709 (HD) (same primaries as sRGB)

bt.2020: ITU-R BT.2020 (UHD)

apple: Apple RGB

adobe: Adobe RGB (1998)

prophoto: ProPhoto RGB (ROMM)

cie1931: CIE 1931 RGB

<gamma>

Gamma function the source file was encoded with. Normally this should be set in the file
header, but when playing broken or mistagged files this can be used to override the setting.

This option only affects video output drivers that perform color management.

If this option is set to auto (which is the default), the gamma will be set to BT.1886 for
YCbCr content, sRGB for RGB content and Linear for XYZ content.

Available gamma functions are:

auto: automatic selection (default)

bt.1886: ITU-R BT.1886 (approximation of BT.601/BT.709/BT.2020 curve)

srgb: IEC 61966-2-4 (sRGB)

linear: Linear light

gamma1.8: Pure power curve (gamma 1.8)

gamma2.2: Pure power curve (gamma 2.2)

gamma2.8: Pure power curve (gamma 2.8)

prophoto: ProPhoto RGB (ROMM) curve

<stereo-in>

Set the stereo mode the video is assumed to be encoded in. Takes the same values as the
--video-stereo-mode option.

<stereo-out>

Set the stereo mode the video should be displayed as. Takes the same values as the
--video-stereo-mode option.

<rotate>

Set the rotation the video is assumed to be encoded with in degrees. The special value -1 uses
the input format.

<dw>, <dh>

Set the display size. Note that setting the display size such that the video is scaled in both
directions instead of just changing the aspect ratio is an implementation detail, and might change
later.

<dar>

Set the display aspect ratio of the video frame. This is a float, but values such as [16:9] can
be passed too ([...] for quoting to prevent the option parser from interpreting the :
character).

noformat[=fmt]

Restricts the color space for the next filter without doing any conversion. Unlike the format filter, this
will allow any color space except the one you specify.

Note

For a list of available formats, see noformat=fmt=help.

<fmt>

Format name, e.g. rgb15, bgr24, 420p, etc. (default: 420p).

lavfi=graph[:sws-flags[:o=opts]]

Filter video using FFmpeg's libavfilter.

<graph>

The libavfilter graph string. The filter must have a single video input pad and a single video
output pad.

See https://ffmpeg.org/ffmpeg-filters.html for syntax and available filters.

Warning

If you want to use the full filter syntax with this option, you have to quote the filter graph in
order to prevent mpv's syntax and the filter graph syntax from clashing.

Examples

-vf lavfi=[gradfun=20:30,vflip]

gradfun filter with nonsense parameters, followed by a vflip filter. (This
demonstrates how libavfilter takes a graph and not just a single filter.) The filter
graph string is quoted with [and]. This requires no additional quoting or
escaping with some shells (like bash), while others (like zsh) require additional "
quotes around the option string.

'--vf=lavfi="gradfun=20:30,vflip"'

https://ffmpeg.org/ffmpeg-filters.html

Same as before, but uses quoting that should be safe with all shells. The outer '
quotes make sure that the shell does not remove the " quotes needed by mpv.

'--vf=lavfi=graph="gradfun=radius=30:strength=20,vflip"'

Same as before, but uses named parameters for everything.

<sws-flags>

If libavfilter inserts filters for pixel format conversion, this option gives the flags which should be
passed to libswscale. This option is numeric and takes a bit-wise combination of SWS_ flags.

See http://git.videolan.org/?p=ffmpeg.git;a=blob;f=libswscale/swscale.h.

<o>

Set AVFilterGraph options. These should be documented by FFmpeg.

Example

'--vf=lavfi=yadif:o="threads=2,thread_type=slice"'

forces a specific threading configuration.

eq[=gamma:contrast:brightness:saturation:rg:gg:bg:weight]

Software equalizer that uses lookup tables (slow), allowing gamma correction in addition to simple
brightness and contrast adjustment. The parameters are given as floating point values.

<0.1-10>

initial gamma value (default: 1.0)

<-2-2>

initial contrast, where negative values result in a negative image (default: 1.0)

<-1-1>

initial brightness (default: 0.0)

<0-3>

initial saturation (default: 1.0)

<0.1-10>

gamma value for the red component (default: 1.0)

<0.1-10>

gamma value for the green component (default: 1.0)

<0.1-10>

gamma value for the blue component (default: 1.0)

<0-1>

The weight parameter can be used to reduce the effect of a high gamma value on bright image
areas, e.g. keep them from getting overamplified and just plain white. A value of 0.0 turns the
gamma correction all the way down while 1.0 leaves it at its full strength (default: 1.0).

pullup[=jl:jr:jt:jb:sb:mp]

Pulldown reversal (inverse telecine) filter, capable of handling mixed hard-telecine, 24000/1001 fps
progressive, and 30000/1001 fps progressive content. The pullup filter makes use of future
context in making its decisions. It is stateless in the sense that it does not lock onto a pattern to

follow, but it instead looks forward to the following fields in order to identify matches and rebuild
progressive frames.

jl, jr, jt, and jb

These options set the amount of "junk" to ignore at the left, right, top, and bottom of the image,
respectively. Left/right are in units of 8 pixels, while top/bottom are in units of 2 lines. The default
is 8 pixels on each side.

sb (strict breaks)

Setting this option to 1 will reduce the chances of pullup generating an occasional mismatched
frame, but it may also cause an excessive number of frames to be dropped during high motion
sequences. Conversely, setting it to -1 will make pullup match fields more easily. This may
help processing of video where there is slight blurring between the fields, but may also cause
there to be interlaced frames in the output.

mp (metric plane)

This option may be set to u or v to use a chroma plane instead of the luma plane for doing
pullup's computations. This may improve accuracy on very clean source material, but more
likely will decrease accuracy, especially if there is chroma noise (rainbow effect) or any grayscale
video. The main purpose of setting mp to a chroma plane is to reduce CPU load and make
pullup usable in realtime on slow machines.

yadif=[mode:interlaced-only]

Yet another deinterlacing filter

<mode>

frame: Output 1 frame for each frame.

field: Output 1 frame for each field.

frame-nospatia
l:

Like frame but skips spatial interlacing check.

field-nospatial: Like field but skips spatial interlacing check.

<interlaced-only>

no: Deinterlace all frames (default).

yes: Only deinterlace frames marked as interlaced (default if this filter is
inserted via deinterlace property).

This filter, is automatically inserted when using the D key (or any other key that toggles the
deinterlace property or when using the --deinterlace switch), assuming the video output
does not have native deinterlacing support.

If you just want to set the default mode, put this filter and its options into --vf-defaults instead,
and enable deinterlacing with D or --deinterlace.

Also note that the D key is stupid enough to insert an interlacer twice when inserting yadif with --vf,
so using the above methods is recommended.

sub=[=bottom-margin:top-margin]

Moves subtitle rendering to an arbitrary point in the filter chain, or force subtitle rendering in the video
filter as opposed to using video output OSD support.

<bottom-margin>

Adds a black band at the bottom of the frame. The SSA/ASS renderer can place subtitles there
(with --sub-use-margins).

<top-margin>

Black band on the top for toptitles (with --sub-use-margins).

Examples

--vf=sub,eq

Moves sub rendering before the eq filter. This will put both subtitle colors and video under
the influence of the video equalizer settings.

stereo3d[=in:out]

Stereo3d converts between different stereoscopic image formats.

<in>

Stereoscopic image format of input. Possible values:

sbsl or side_by_side_left_first

side by side parallel (left eye left, right eye right)

sbsr or side_by_side_right_first

side by side crosseye (right eye left, left eye right)

abl or above_below_left_first

above-below (left eye above, right eye below)

abr or above_below_right_first

above-below (right eye above, left eye below)

ab2l or above_below_half_height_left_first

above-below with half height resolution (left eye above, right eye below)

ab2r or above_below_half_height_right_first

above-below with half height resolution (right eye above, left eye below)

<out>

Stereoscopic image format of output. Possible values are all the input formats as well as:

arcg or anaglyph_red_cyan_gray

anaglyph red/cyan gray (red filter on left eye, cyan filter on right eye)

arch or anaglyph_red_cyan_half_color

anaglyph red/cyan half colored (red filter on left eye, cyan filter on right eye)

arcc or anaglyph_red_cyan_color

anaglyph red/cyan color (red filter on left eye, cyan filter on right eye)

arcd or anaglyph_red_cyan_dubois

anaglyph red/cyan color optimized with the least-squares projection of Dubois (red filter on
left eye, cyan filter on right eye)

agmg or anaglyph_green_magenta_gray

anaglyph green/magenta gray (green filter on left eye, magenta filter on right eye)

agmh or anaglyph_green_magenta_half_color

anaglyph green/magenta half colored (green filter on left eye, magenta filter on right eye)

agmc or anaglyph_green_magenta_color

anaglyph green/magenta colored (green filter on left eye, magenta filter on right eye)

aybg or anaglyph_yellow_blue_gray

anaglyph yellow/blue gray (yellow filter on left eye, blue filter on right eye)

aybh or anaglyph_yellow_blue_half_color

anaglyph yellow/blue half colored (yellow filter on left eye, blue filter on right eye)

aybc or anaglyph_yellow_blue_color

anaglyph yellow/blue colored (yellow filter on left eye, blue filter on right eye)

irl or interleave_rows_left_first

Interleaved rows (left eye has top row, right eye starts on next row)

irr or interleave_rows_right_first

Interleaved rows (right eye has top row, left eye starts on next row)

ml or mono_left

mono output (left eye only)

mr or mono_right

mono output (right eye only)

gradfun[=strength[:radius|:size=<size>]]

Fix the banding artifacts that are sometimes introduced into nearly flat regions by truncation to 8-bit
color depth. Interpolates the gradients that should go where the bands are, and dithers them.

<strength>

Maximum amount by which the filter will change any one pixel. Also the threshold for detecting
nearly flat regions (default: 1.5).

<radius>

Neighborhood to fit the gradient to. Larger radius makes for smoother gradients, but also
prevents the filter from modifying pixels near detailed regions (default: disabled).

<size>

size of the filter in percent of the image diagonal size. This is used to calculate the final radius
size (default: 1).

dlopen=dll[:a0[:a1[:a2[:a3]]]]

Loads an external library to filter the image. The library interface is the vf_dlopen interface
specified using libmpcodecs/vf_dlopen.h.

Warning

This filter is deprecated.

dll=<library>

Specify the library to load. This may require a full file system path in some cases. This argument
is required.

a0=<string>

Specify the first parameter to pass to the library.

a1=<string>

Specify the second parameter to pass to the library.

a2=<string>

Specify the third parameter to pass to the library.

a3=<string>

Specify the fourth parameter to pass to the library.

vapoursynth=file:buffered-frames:concurrent-frames

Loads a VapourSynth filter script. This is intended for streamed processing: mpv actually provides a
source filter, instead of using a native VapourSynth video source. The mpv source will answer frame
requests only within a small window of frames (the size of this window is controlled with the

buffered-frames parameter), and requests outside of that will return errors. As such, you can't
use the full power of VapourSynth, but you can use certain filters.

If you just want to play video generated by a VapourSynth (i.e. using a native VapourSynth video
source), it's better to use vspipe and a FIFO to feed the video to mpv. The same applies if the filter
script requires random frame access (see buffered-frames parameter).

This filter is experimental. If it turns out that it works well and is used, it will be ported to libavfilter.
Otherwise, it will be just removed.

file

Filename of the script source. Currently, this is always a python script. The variable video_in
is set to the mpv video source, and it is expected that the script reads video from it. (Otherwise,
mpv will decode no video, and the video packet queue will overflow, eventually leading to audio
being stopped.) The script is also expected to pass through timestamps using the
_DurationNum and _DurationDen frame properties.

Example:

import vapoursynth as vs
core = vs.get_core()
core.std.AddBorders(video_in, 10, 10, 20, 20).set_output()

Warning

The script will be reloaded on every seek. This is done to reset the filter properly on
discontinuities.

buffered-frames

Maximum number of decoded video frames that should be buffered before the filter (default: 4).
This specifies the maximum number of frames the script can requests backwards. E.g. if
buffered-frames=5, and the script just requested frame 15, it can still request frame 10, but
frame 9 is not available anymore. If it requests frame 30, mpv will decode 15 more frames, and
keep only frames 25-30.

The actual number of buffered frames also depends on the value of the concurrent-frames
option. Currently, both option values are multiplied to get the final buffer size.

(Normally, VapourSynth source filters must provide random access, but mpv was made for
playback, and does not provide frame-exact random access. The way this video filter works is a
compromise to make simple filters work anyway.)

concurrent-frames

Number of frames that should be requested in parallel. The level of concurrency depends on the
filter and how quickly mpv can decode video to feed the filter. This value should probably be
proportional to the number of cores on your machine. Most time, making it higher than the
number of cores can actually make it slower.

By default, this uses the special value auto, which sets the option to the number of detected
logical CPU cores.

The following variables are defined by mpv:

video_in

The mpv video source as vapoursynth clip. Note that this has no length set, which confuses
many filters. Using Trim on the clip with a high dummy length can turn it into a finite clip.

video_in_dw, video_in_dh

Display size of the video. Can be different from video size if the video does not use square pixels
(e.g. DVD).

container_fps

FPS value as reported by file headers. This value can be wrong or completely broken (e.g. 0 or
NaN). Even if the value is correct, if another filter changes the real FPS (by dropping or inserting
frames), the value of this variable might not be useful. Note that the --fps command line option
overrides this value.

Useful for some filters which insist on having a FPS.

display_fps

Refresh rate of the current display. Note that this value can be 0.

vapoursynth-lazy

The same as vapoursynth, but doesn't load Python scripts. Instead, a custom backend using Lua
and the raw VapourSynth API is used. The syntax is completely different, and absolutely no
convenience features are provided. There's no type checking either, and you can trigger crashes.

Example:

video_out = invoke("morpho", "Open", {clip = video_in})

The special variable video_in is the mpv video source, while the special variable video_out is
used to read video from. The 1st argument is the plugin (queried with getPluginByNs), the 2nd is
the filter name, and the 3rd argument is a table with the arguments. Positional arguments are not
supported. The types must match exactly. Since Lua is terrible and can't distinguish integers and
floats, integer arguments must be prefixed with i_, in which case the prefix is removed and the
argument is cast to an integer. Should the argument's name start with i_, you're out of luck.

Clips (VSNodeRef) are passed as light userdata, so trying to pass any other userdata type will result
in hard crashes.

vavpp

VA-AP-API video post processing. Works with --vo=vaapi and --vo=opengl only. Currently
deinterlaces. This filter is automatically inserted if deinterlacing is requested (either using the D key,
by default mapped to the command cycle deinterlace, or the --deinterlace option).

deint=<method>

Select the deinterlacing algorithm.

no

Don't perform deinterlacing.

first-field

Show only first field (going by --field-dominance).

bob

bob deinterlacing (default).

weave, motion-adaptive, motion-compensated

Advanced deinterlacing algorithms. Whether these actually work depends on the GPU
hardware, the GPU drivers, driver bugs, and mpv bugs.

<interlaced-only>

no: Deinterlace all frames.

yes: Only deinterlace frames marked as interlaced (default).

vdpaupp

VDPAU video post processing. Works with --vo=vdpau and --vo=opengl only. This filter is
automatically inserted if deinterlacing is requested (either using the D key, by default mapped to the
command cycle deinterlace, or the --deinterlace option). When enabling deinterlacing, it is
always preferred over software deinterlacer filters if the vdpau VO is used, and also if opengl is
used and hardware decoding was activated at least once (i.e. vdpau was loaded).

sharpen=<-1-1>

For positive values, apply a sharpening algorithm to the video, for negative values a blurring
algorithm (default: 0).

denoise=<0-1>

Apply a noise reduction algorithm to the video (default: 0; no noise reduction).

deint=<yes|no>

Whether deinterlacing is enabled (default: no). If enabled, it will use the mode selected with
deint-mode.

deint-mode=<first-field|bob|temporal|temporal-spatial>

Select deinterlacing mode (default: temporal). All modes respect --field-dominance.

Note that there's currently a mechanism that allows the vdpau VO to change the deint-mode
of auto-inserted vdpaupp filters. To avoid confusion, it's recommended not to use the
--vo=vdpau suboptions related to filtering.

first-field

Show only first field.

bob

Bob deinterlacing.

temporal

Motion-adaptive temporal deinterlacing. May lead to A/V desync with slow video hardware
and/or high resolution.

temporal-spatial

Motion-adaptive temporal deinterlacing with edge-guided spatial interpolation. Needs fast
video hardware.

chroma-deint

Makes temporal deinterlacers operate both on luma and chroma (default). Use no-chroma-deint
to solely use luma and speed up advanced deinterlacing. Useful with slow video memory.

pullup

Try to apply inverse telecine, needs motion adaptive temporal deinterlacing.

interlaced-only=<yes|no>

If yes (default), only deinterlace frames marked as interlaced.

hqscaling=<0-9>

0

Use default VDPAU scaling (default).

1-9

Apply high quality VDPAU scaling (needs capable hardware).

vdpaurb

VDPAU video read back. Works with --vo=vdpau and --vo=opengl only. This filter will read
back frames decoded by VDPAU so that other filters, which are not normally compatible with VDPAU,
can be used like normal. This filter must be specified before vdpaupp in the filter chain if vdpaupp
is used.

buffer=<num>

Buffer <num> frames in the filter chain. This filter is probably pretty useless, except for debugging.
(Note that this won't help smoothing out latencies with decoding, because the filter will never output a
frame if the buffer isn't full, except on EOF.)

ENCODING
You can encode files from one format/codec to another using this facility.

--o=<filename>

Enables encoding mode and specifies the output file name.

--of=<format>

Specifies the output format (overrides autodetection by the file name extension of the file specified by
-o). This can be a comma separated list of possible formats to try. See --of=help for a full list of
supported formats.

--ofopts=<options>

Specifies the output format options for libavformat. See --ofopts=help for a full list of supported
options.

Options are managed in lists. There are a few commands to manage the options list.

--ofopts-add=<options1[,options2,...]>

Appends the options given as arguments to the options list.

--ofopts-pre=<options1[,options2,...]>

Prepends the options given as arguments to the options list.

--ofopts-del=<index1[,index2,...]>

Deletes the options at the given indexes. Index numbers start at 0, negative numbers address
the end of the list (-1 is the last).

--ofopts-clr

Completely empties the options list.

--ofps=<float value>

Specifies the output format time base (default: 24000). Low values like 25 limit video fps by dropping
frames.

--oautofps

Sets the output format time base to the guessed frame rate of the input video (simulates MEncoder
behavior, useful for AVI; may cause frame drops). Note that not all codecs and not all formats support
VFR encoding, and some which do have bugs when a target bitrate is specified - use --ofps or
--oautofps to force CFR encoding in these cases.

--omaxfps=<float value>

Specifies the minimum distance of adjacent frames (default: 0, which means unset). Content of lower
frame rate is not readjusted to this frame rate; content of higher frame rate is decimated to this frame
rate.

--oharddup

If set, the frame rate given by --ofps is attained not by skipping time codes, but by duplicating
frames (constant frame rate mode).

--oneverdrop

If set, frames are never dropped. Instead, time codes of video are readjusted to always increase. This
may cause AV desync, though; to work around this, use a high-fps time base using --ofps and
absolutely avoid --oautofps.

--oac=<codec>

Specifies the output audio codec. This can be a comma separated list of possible codecs to try. See
--oac=help for a full list of supported codecs.

--oaoffset=<value>

Shifts audio data by the given time (in seconds) by adding/removing samples at the start.

--oacopts=<options>

Specifies the output audio codec options for libavcodec. See --oacopts=help for a full list of
supported options.

Example

"--oac=libmp3lame --oacopts=b=128000"

selects 128 kbps MP3 encoding.

Options are managed in lists. There are a few commands to manage the options list.

--oacopts-add=<options1[,options2,...]>

Appends the options given as arguments to the options list.

--oacopts-pre=<options1[,options2,...]>

Prepends the options given as arguments to the options list.

--oacopts-del=<index1[,index2,...]>

Deletes the options at the given indexes. Index numbers start at 0, negative numbers address
the end of the list (-1 is the last).

--oacopts-clr

Completely empties the options list.

--oafirst

Force the audio stream to become the first stream in the output. By default the order is unspecified.

--ovc=<codec>

Specifies the output video codec. This can be a comma separated list of possible codecs to try. See
--ovc=help for a full list of supported codecs.

--ovoffset=<value>

Shifts video data by the given time (in seconds) by shifting the pts values.

--ovcopts <options>

Specifies the output video codec options for libavcodec. See --ovcopts=help for a full list of supported
options.

Examples

"--ovc=mpeg4 --ovcopts=qscale=5"

selects constant quantizer scale 5 for MPEG-4 encoding.

"--ovc=libx264 --ovcopts=crf=23"

selects VBR quality factor 23 for H.264 encoding.

Options are managed in lists. There are a few commands to manage the options list.

--ovcopts-add=<options1[,options2,...]>

Appends the options given as arguments to the options list.

--ovcopts-pre=<options1[,options2,...]>

Prepends the options given as arguments to the options list.

--ovcopts-del=<index1[,index2,...]>

Deletes the options at the given indexes. Index numbers start at 0, negative numbers address
the end of the list (-1 is the last).

--ovcopts-clr

Completely empties the options list.

--ovfirst

Force the video stream to become the first stream in the output. By default the order is unspecified.

--ocopyts

Copies input pts to the output video (not supported by some output container formats, e.g. AVI).
Discontinuities are still fixed. By default, audio pts are set to playback time and video pts are
synchronized to match audio pts, as some output formats do not support anything else.

--orawts

Copies input pts to the output video (not supported by some output container formats, e.g. AVI). In
this mode, discontinuities are not fixed and all pts are passed through as-is. Never seek backwards or
use multiple input files in this mode!

--no-ometadata

Turns off copying of metadata from input files to output files when encoding (which is enabled by
default).

COMMAND INTERFACE
The mpv core can be controlled with commands and properties. A number of ways to interact with the
player use them: key bindings (input.conf), OSD (showing information with properties), JSON IPC, the
client API (libmpv), and the classic slave mode.

input.conf
The input.conf file consists of a list of key bindings, for example:

s screenshot # take a screenshot with the s key
LEFT seek 15 # map the left-arrow key to seeking forward by 15 seconds

Each line maps a key to an input command. Keys are specified with their literal value (upper case if
combined with Shift), or a name for special keys. For example, a maps to the a key without shift, and
A maps to a with shift.

The file is located in the mpv configuration directory (normally at ~/.config/mpv/input.conf
depending on platform). The default bindings are defined here:

https://github.com/mpv-player/mpv/blob/master/etc/input.conf

A list of special keys can be obtained with

mpv --input-keylist

In general, keys can be combined with Shift, Ctrl and Alt:

ctrl+q quit

mpv can be started in input test mode, which displays key bindings and the commands they're bound to
on the OSD, instead of executing the commands:

mpv --input-test --force-window --idle

(Only closing the window will make mpv exit, pressing normal keys will merely display the binding, even if
mapped to quit.)

General Input Command Syntax
[Shift+][Ctrl+][Alt+][Meta+]<key> [{<section>}] [<prefixes>] <command> (<argum ent>)* [; <command>]

Note that by default, the right Alt key can be used to create special characters, and thus does not register
as a modifier. The option --no-input-right-alt-gr changes this behavior.

Newlines always start a new binding. # starts a comment (outside of quoted string arguments). To bind
commands to the # key, SHARP can be used.

<key> is either the literal character the key produces (ASCII or Unicode character), or a symbolic name
(as printed by --input-keylist).

<section> (braced with { and }) is the input section for this command.

Arguments are separated by whitespace. This applies even to string arguments. For this reason, string
arguments should be quoted with ". Inside quotes, C-style escaping can be used.

You can bind multiple commands to one key. For example:

a show-text "command 1" ; show-text "command 2"

It's also possible to bind a command to a sequence of keys:

a-b-c show-text "command run after a, b, c have been pressed"

(This is not shown in the general command syntax.)

If a or a-b or b are already bound, this will run the first command that matches, and the multi-key
command will never be called. Intermediate keys can be remapped to ignore in order to avoid this
issue. The maximum number of (non-modifier) keys for combinations is currently 4.

List of Input Commands
ignore

Use this to "block" keys that should be unbound, and do nothing. Useful for disabling default bindings,
without disabling all bindings with --no-input-default-bindings.

seek <seconds> [relative|absolute|absolute-percent|relative-percent|exact|keyf rames]

Change the playback position. By default, seeks by a relative amount of seconds.

The second argument consists of flags controlling the seek mode:

relative (default)

Seek relative to current position (a negative value seeks backwards).

absolute

Seek to a given time.

absolute-percent

Seek to a given percent position.

relative-percent

Seek relative to current position in percent.

keyframes

Always restart playback at keyframe boundaries (fast).

exact

Always do exact/hr/precise seeks (slow).

Multiple flags can be combined, e.g.: absolute+keyframes.

By default, keyframes is used for relative seeks, and exact is used for absolute seeks.

Before mpv 0.9, the keyframes and exact flags had to be passed as 3rd parameter (essentially
using a space instead of +). The 3rd parameter is still parsed, but is considered deprecated.

revert-seek [mode]

Undoes the seek command, and some other commands that seek (but not necessarily all of them).
Calling this command once will jump to the playback position before the seek. Calling it a second time
undoes the revert-seek command itself. This only works within a single file.

The first argument is optional, and can change the behavior:

mark

Mark the current time position. The next normal revert-seek command will seek back to this
point, no matter how many seeks happened since last time.

Using it without any arguments gives you the default behavior.

frame-step

Play one frame, then pause. Does nothing with audio-only playback.

frame-back-step

Go back by one frame, then pause. Note that this can be very slow (it tries to be precise, not fast),
and sometimes fails to behave as expected. How well this works depends on whether precise
seeking works correctly (e.g. see the --hr-seek-demuxer-offset option). Video filters or other
video post-processing that modifies timing of frames (e.g. deinterlacing) should usually work, but
might make backstepping silently behave incorrectly in corner cases. Using
--hr-seek-framedrop=no should help, although it might make precise seeking slower.

This does not work with audio-only playback.

set <property> "<value>"

Set the given property to the given value.

add <property> [<value>]

Add the given value to the property. On overflow or underflow, clamp the property to the maximum. If
<value> is omitted, assume 1.

cycle <property> [up|down]

Cycle the given property. up and down set the cycle direction. On overflow, set the property back to
the minimum, on underflow set it to the maximum. If up or down is omitted, assume up.

multiply <property> <factor>

Multiplies the value of a property with the numeric factor.

screenshot [subtitles|video|window|- [single|each-frame]]

Take a screenshot.

First argument:

<subtitles> (default)

Save the video image, in its original resolution, and with subtitles. Some video outputs may still
include the OSD in the output under certain circumstances.

<video>

Like subtitles, but typically without OSD or subtitles. The exact behavior depends on the
selected video output.

<window>

Save the contents of the mpv window. Typically scaled, with OSD and subtitles. The exact
behavior depends on the selected video output, and if no support is available, this will act like
video.

<each-frame>

Take a screenshot each frame. Issue this command again to stop taking screenshots. Note that
you should disable frame-dropping when using this mode - or you might receive duplicate images
in cases when a frame was dropped. This flag can be combined with the other flags, e.g.
video+each-frame.

screenshot-to-file "<filename>" [subtitles|video|window]

Take a screenshot and save it to a given file. The format of the file will be guessed by the extension
(and --screenshot-format is ignored - the behavior when the extension is missing or unknown
is arbitrary).

The second argument is like the first argument to screenshot.

If the file already exists, it's overwritten.

Like all input command parameters, the filename is subject to property expansion as described in
Property Expansion.

playlist-next [weak|force]

Go to the next entry on the playlist.

weak (default)

If the last file on the playlist is currently played, do nothing.

force

Terminate playback if there are no more files on the playlist.

playlist-prev [weak|force]

Go to the previous entry on the playlist.

weak (default)

If the first file on the playlist is currently played, do nothing.

force

Terminate playback if the first file is being played.

loadfile "<file>" [replace|append|append-play [options]]

Load the given file and play it.

Second argument:

<replace> (default)

Stop playback of the current file, and play the new file immediately.

<append>

Append the file to the playlist.

<append-play>

Append the file, and if nothing is currently playing, start playback. (Always starts with the added
file, even if the playlist was not empty before running this command.)

The third argument is a list of options and values which should be set while the file is playing. It is of
the form opt1=value1,opt2=value2,... Not all options can be changed this way. Some options
require a restart of the player.

loadlist "<playlist>" [replace|append]

Load the given playlist file (like --playlist).

playlist-clear

Clear the playlist, except the currently played file.

playlist-remove current|<index>

Remove the playlist entry at the given index. Index values start counting with 0. The special value
current removes the current entry. Note that removing the current entry also stops playback and
starts playing the next entry.

playlist-move <index1> <index2>

Move the playlist entry at index1, so that it takes the place of the entry index2. (Paradoxically, the
moved playlist entry will not have the index value index2 after moving if index1 was lower than
index2, because index2 refers to the target entry, not the index the entry will have after moving.)

playlist-shuffle

Shuffle the playlist. This is similar to what is done on start if the --shuffle option is used.

run "command" "arg1" "arg2" ...

Run the given command. Unlike in MPlayer/mplayer2 and earlier versions of mpv (0.2.x and older),
this doesn't call the shell. Instead, the command is run directly, with each argument passed
separately. Each argument is expanded like in Property Expansion. Note that there is a static limit of
(as of this writing) 9 arguments (this limit could be raised on demand).

The program is run in a detached way. mpv doesn't wait until the command is completed, but
continues playback right after spawning it.

To get the old behavior, use /bin/sh and -c as the first two arguments.

Example

run "/bin/sh" "-c" "echo ${title} > /tmp/playing"

This is not a particularly good example, because it doesn't handle escaping, and a specially
prepared file might allow an attacker to execute arbitrary shell commands. It is recommended
to write a small shell script, and call that with run.

quit [<code>]

Exit the player. If an argument is given, it's used as process exit code.

quit-watch-later [<code>]

Exit player, and store current playback position. Playing that file later will seek to the previous position
on start. The (optional) argument is exactly as in the quit command.

sub-add "<file>" [<flags> [<title> [<lang>]]]

Load the given subtitle file. It is selected as current subtitle after loading.

The flags args is one of the following values:

<select>

Select the subtitle immediately.

<auto>

Don't select the subtitle. (Or in some special situations, let the default stream selection
mechanism decide.)

<cached>

Select the subtitle. If a subtitle with the same filename was already added, that one is selected,
instead of loading a duplicate entry. (In this case, title/language are ignored, and if the was
changed since it was loaded, these changes won't be reflected.)

The title argument sets the track title in the UI.

The lang argument sets the track language, and can also influence stream selection with flags
set to auto.

sub-remove [<id>]

Remove the given subtitle track. If the id argument is missing, remove the current track. (Works on
external subtitle files only.)

sub-reload [<id>]

Reload the given subtitle tracks. If the id argument is missing, reload the current track. (Works on
external subtitle files only.)

This works by unloading and re-adding the subtitle track.

sub-step <skip>

Change subtitle timing such, that the subtitle event after the next <skip> subtitle events is
displayed. <skip> can be negative to step backwards.

sub-seek <skip>

Seek to the next (skip set to 1) or the previous (skip set to -1) subtitle. This is similar to sub-step,
except that it seeks video and audio instead of adjusting the subtitle delay.

Like with sub-step, this works with external text subtitles only. For embedded text subtitles (like with
Matroska), this works only with subtitle events that have already been displayed.

osd [<level>]

Toggle OSD level. If <level> is specified, set the OSD mode (see --osd-level for valid values).

print-text "<string>"

Print text to stdout. The string can contain properties (see Property Expansion).

show-text "<string>" [<duration>|- [<level>]]

Show text on the OSD. The string can contain properties, which are expanded as described in
Property Expansion. This can be used to show playback time, filename, and so on.

<duration>

The time in ms to show the message for. By default, it uses the same value as
--osd-duration.

<level>

The minimum OSD level to show the text at (see --osd-level).

show-progress

Show the progress bar, the elapsed time and the total duration of the file on the OSD.

write-watch-later-config

Write the resume config file that the quit-watch-later command writes, but continue playback
normally.

stop

Stop playback and clear playlist. With default settings, this is essentially like quit. Useful for the
client API: playback can be stopped without terminating the player.

mouse <x> <y> [<button> [single|double]]

Send a mouse event with given coordinate (<x>, <y>).

Second argument:

<button>

The button number of clicked mouse button. This should be one of 0-19. If <button> is omitted,
only the position will be updated.

Third argument:

<single> (default)

The mouse event represents regular single click.

<double>

The mouse event represents double-click.

keypress <key_name>

Send a key event through mpv's input handler, triggering whatever behavior is configured to that key.
key_name uses the input.conf naming scheme for keys and modifiers. Useful for the client API:
key events can be sent to libmpv to handle internally.

keydown <key_name>

Similar to keypress, but sets the KEYDOWN flag so that if the key is bound to a repeatable
command, it will be run repeatedly with mpv's key repeat timing until the keyup command is called.

keyup [<key_name>]

Set the KEYUP flag, stopping any repeated behavior that had been triggered. key_name is optional.
If key_name is not given or is an empty string, KEYUP will be set on all keys. Otherwise, KEYUP will
only be set on the key specified by key_name.

audio-add "<file>" [<flags> [<title> [<lang>]]]

Load the given audio file. See sub-add command.

audio-remove [<id>]

Remove the given audio track. See sub-remove command.

audio-reload [<id>]

Reload the given audio tracks. See sub-reload command.

rescan-external-files [<mode>]

Rescan external files according to the current --sub-auto and --audio-file-auto settings.
This can be used to auto-load external files after the file was loaded.

The mode argument is one of the following:

<reselect> (default)

Select the default audio and subtitle streams, which typically selects external files with highest
preference. (The implementation is not perfect, and could be improved on request.)

<keep-selection>

Do not change current track selections.

Input Commands that are Possibly Subject to Change
af set|add|toggle|del|clr "filter1=params,filter2,..."

Change audio filter chain. See vf command.

vf set|add|toggle|del|clr "filter1=params,filter2,..."

Change video filter chain.

The first argument decides what happens:

set

Overwrite the previous filter chain with the new one.

add

Append the new filter chain to the previous one.

toggle

Check if the given filter (with the exact parameters) is already in the video chain. If yes, remove
the filter. If no, add the filter. (If several filters are passed to the command, this is done for each
filter.)

del

Remove the given filters from the video chain. Unlike in the other cases, the second parameter is
a comma separated list of filter names or integer indexes. 0 would denote the first filter.
Negative indexes start from the last filter, and -1 denotes the last filter.

clr

Remove all filters. Note that like the other sub-commands, this does not control automatically
inserted filters.

You can assign labels to filter by prefixing them with @name: (where name is a user-chosen
arbitrary identifier). Labels can be used to refer to filters by name in all of the filter chain modification
commands. For add, using an already used label will replace the existing filter.

The vf command shows the list of requested filters on the OSD after changing the filter chain. This
is roughly equivalent to show-text ${vf}. Note that auto-inserted filters for format conversion are
not shown on the list, only what was requested by the user.

Normally, the commands will check whether the video chain is recreated successfully, and will undo
the operation on failure. If the command is run before video is configured (can happen if the
command is run immediately after opening a file and before a video frame is decoded), this check
can't be run. Then it can happen that creating the video chain fails.

Example for input.conf

• a vf set flip turn video upside-down on the a key

• b vf set "" remove all video filters on b

• c vf toggle lavfi=gradfun toggle debanding on c

cycle-values ["!reverse"] <property> "<value1>" "<value2>" ...

Cycle through a list of values. Each invocation of the command will set the given property to the next
value in the list. The command maintains an internal counter which value to pick next, and which is
initially 0. It is reset to 0 once the last value is reached.

The internal counter is associated using the property name and the value list. If multiple commands
(bound to different keys) use the same name and value list, they will share the internal counter.

The special argument !reverse can be used to cycle the value list in reverse. Compared with a
command that just lists the value in reverse, this command will actually share the internal counter with
the forward-cycling key binding (as long as the rest of the arguments are the same).

Note that there is a static limit of (as of this writing) 10 arguments (this limit could be raised on
demand).

enable-section "<section>" [flags]

Enable all key bindings in the named input section.

The enabled input sections form a stack. Bindings in sections on the top of the stack are preferred to
lower sections. This command puts the section on top of the stack. If the section was already on the
stack, it is implicitly removed beforehand. (A section cannot be on the stack more than once.)

The flags parameter can be a combination (separated by +) of the following flags:

<exclusive>

All sections enabled before the newly enabled section are disabled. They will be re-enabled as
soon as all exclusive sections above them are removed. In other words, the new section
shadows all previous sections.

<allow-hide-cursor>

This feature can't be used through the public API.

<allow-vo-dragging>

Same.

disable-section "<section>"

Disable the named input section. Undoes enable-section.

define-section "<section>" "<contents>" [default|forced]

Create a named input section, or replace the contents of an already existing input section. The
contents parameter uses the same syntax as the input.conf file (except that using the section
syntax in it is not allowed), including the need to separate bindings with a newline character.

If the contents parameter is an empty string, the section is removed.

The section with the name default is the normal input section.

In general, input sections have to be enabled with the enable-section command, or they are
ignored.

The last parameter has the following meaning:

<default> (also used if parameter omitted)

Use a key binding defined by this section only if the user hasn't already bound this key to a
command.

<forced>

Always bind a key. (The input section that was made active most recently wins if there are
ambiguities.)

overlay-add <id> <x> <y> "<file>" <offset> "<fmt>" <w> <h> <stride>

Add an OSD overlay sourced from raw data. This might be useful for scripts and applications
controlling mpv, and which want to display things on top of the video window.

Overlays are usually displayed in screen resolution, but with some VOs, the resolution is reduced to
that of the video's. You can read the osd-width and osd-height properties. At least with
--vo-xv and anamorphic video (such as DVD), osd-par should be read as well, and the overlay
should be aspect-compensated. (Future directions: maybe mpv should take care of some of these
things automatically, but it's hard to tell where to draw the line.)

id is an integer between 0 and 63 identifying the overlay element. The ID can be used to add
multiple overlay parts, update a part by using this command with an already existing ID, or to remove
a part with overlay-remove. Using a previously unused ID will add a new overlay, while reusing an
ID will update it. (Future directions: there should be something to ensure different programs wanting
to create overlays don't conflict with each others, should that ever be needed.)

x and y specify the position where the OSD should be displayed.

file specifies the file the raw image data is read from. It can be either a numeric UNIX file descriptor
prefixed with @ (e.g. @4), or a filename. The file will be mapped into memory with mmap(). Some
VOs will pass the mapped pointer directly to display APIs (e.g. opengl or vdpau), so no actual copying
is involved. Truncating the source file while the overlay is active will crash the player. You shouldn't
change the data while the overlay is active, because the data is essentially accessed at random
points. Instead, call overlay-add again (preferably with a different memory region to prevent
tearing).

It is also possible to pass a raw memory address for use as bitmap memory by passing a memory
address as integer prefixed with an & character. Passing the wrong thing here will crash the player.
This mode might be useful for use with libmpv. The offset parameter is simply added to the
memory address (since mpv 0.8.0, ignored before).

offset is the byte offset of the first pixel in the source file. (The current implementation always
mmap's the whole file from position 0 to the end of the image, so large offsets should be avoided.

Before mpv 0.8.0, the offset was actually passed directly to mmap, but it was changed to make using it
easier.)

fmt is a string identifying the image format. Currently, only bgra is defined. This format has 4 bytes
per pixels, with 8 bits per component. The least significant 8 bits are blue, and the most significant 8
bits are alpha (in little endian, the components are B-G-R-A, with B as first byte). This uses
premultiplied alpha: every color component is already multiplied with the alpha component. This
means the numeric value of each component is equal to or smaller than the alpha component.
(Violating this rule will lead to different results with different VOs: numeric overflows resulting from
blending broken alpha values is considered something that shouldn't happen, and consequently
implementations don't ensure that you get predictable behavior in this case.)

w, h, and stride specify the size of the overlay. w is the visible width of the overlay, while stride
gives the width in bytes in memory. In the simple case, and with the bgra format, stride==4*w. In
general, the total amount of memory accessed is stride * h. (Technically, the minimum size would
be stride * (h - 1) + w * 4, but for simplicity, the player will access all stride * h bytes.)

Warning

When updating the overlay, you should prepare a second shared memory region (e.g. make
use of the offset parameter) and add this as overlay, instead of reusing the same memory
every time. Otherwise, you might get the equivalent of tearing, when your application and mpv
write/read the buffer at the same time. Also, keep in mind that mpv might access an overlay's
memory at random times whenever it feels the need to do so, for example when redrawing the
screen.

overlay-remove <id>

Remove an overlay added with overlay-add and the same ID. Does nothing if no overlay with this
ID exists.

script-message "<arg1>" "<arg2>" ...

Send a message to all clients, and pass it the following list of arguments. What this message means,
how many arguments it takes, and what the arguments mean is fully up to the receiver and the
sender. Every client receives the message, so be careful about name clashes (or use
script_message_to).

script-message-to "<target>" "<arg1>" "<arg2>" ...

Same as script_message, but send it only to the client named <target>. Each client (scripts etc.)
has a unique name. For example, Lua scripts can get their name via mp.get_script_name().

script-binding "<name>"

Invoke a script-provided key binding. This can be used to remap key bindings provided by external
Lua scripts.

The argument is the name of the binding.

It can optionally be prefixed with the name of the script, using / as separator, e.g.
script_binding scriptname/bindingname.

For completeness, here is how this command works internally. The details could change any time. On
any matching key event, script_message_to or script_message is called (depending on
whether the script name is included), where the first argument is the string key-binding, the
second argument is the name of the binding, and the third argument is the key state as string. The
key state consists of a number of letters. The first letter is one of d (key was pressed down), u (was
released), r (key is still down, and was repeated; only if key repeat is enabled for this binding), p
(key was pressed; happens if up/down can't be tracked). The second letter whether the event
originates from the mouse, either m (mouse button) or - (something else).

ab-loop

Cycle through A-B loop states. The first command will set the A point (the ab-loop-a property); the
second the B point, and the third will clear both points.

vo-cmdline "<args>"

Reset the sub-option of the current VO. Currently works with opengl (including opengl-hq). The
argument is the sub-option string usually passed to the VO on the command line. Not all sub-options
can be set, but those which can will be reset even if they don't appear in the argument. This
command might be changed or removed in the future.

drop-buffers

Drop audio/video/demuxer buffers, and restart from fresh. Might help with unseekable streams that
are going out of sync. This command might be changed or removed in the future.

screenshot-raw [subtitles|video|window]

Return a screenshot in memory. This can be used only through the client API. The
MPV_FORMAT_NODE_MAP returned by this command has the w, h, stride fields set to obvious
contents. A format field is set to bgr0 by default. This format is organized as B8G8R8X8 (where
B is the LSB). The contents of the padding X is undefined. The data field is of type
MPV_FORMAT_BYTE_ARRAY with the actual image data. The image is freed as soon as the result
node is freed.

Undocumented commands: tv-last-channel (TV/DVB only), ao-reload (experimental/internal).

Hooks
Hooks are synchronous events between player core and a script or similar. This applies to client API
(including the Lua scripting interface). Normally, events are supposed to be asynchronous, and the hook
API provides an awkward and obscure way to handle events that require stricter coordination. There are
no API stability guarantees made. Not following the protocol exactly can make the player freeze randomly.
Basically, nobody should use this API.

There are two special commands involved. Also, the client must listen for client messages
(MPV_EVENT_CLIENT_MESSAGE in the C API).

hook-add <hook-name> <id> <priority>

Subscribe to the hook identified by the first argument (basically, the name of event). The id
argument is an arbitrary integer chosen by the user. priority is used to sort all hook handlers
globally across all clients. Each client can register multiple hook handlers (even for the same
hook-name). Once the hook is registered, it cannot be unregistered.

When a specific event happens, all registered handlers are run serially. This uses a protocol every
client has to follow explicitly. When a hook handler is run, a client message
(MPV_EVENT_CLIENT_MESSAGE) is sent to the client which registered the hook. This message has
the following arguments:

1. the string hook_run

2. the id argument the hook was registered with as string (this can be used to correctly handle
multiple hooks registered by the same client, as long as the id argument is unique in the client)

3. something undefined, used by the hook mechanism to track hook execution (currently, it's the
hook-name, but this might change without warning)

Upon receiving this message, the client can handle the event. While doing this, the player core will
still react to requests, but playback will typically be stopped.

When the client is done, it must continue the core's hook execution by running the hook-ack
command.

hook-ack <string>

Run the next hook in the global chain of hooks. The argument is the 3rd argument of the client
message that starts hook execution for the current client.

The following hooks are currently defined:

on_load

Called when a file is to be opened, before anything is actually done. For example, you could read and
write the stream-open-filename property to redirect an URL to something else (consider support
for streaming sites which rarely give the user a direct media URL), or you could set per-file options
with by setting the property file-local-options/<option name>. The player will wait until all
hooks are run.

on_unload

Run before closing a file, and before actually uninitializing everything. It's not possible to resume
playback in this state.

Input Command Prefixes
These prefixes are placed between key name and the actual command. Multiple prefixes can be specified.
They are separated by whitespace.

osd-auto (default)

Use the default behavior for this command.

no-osd

Do not use any OSD for this command.

osd-bar

If possible, show a bar with this command. Seek commands will show the progress bar, property
changing commands may show the newly set value.

osd-msg

If possible, show an OSD message with this command. Seek command show the current playback
time, property changing commands show the newly set value as text.

osd-msg-bar

Combine osd-bar and osd-msg.

raw

Do not expand properties in string arguments. (Like "${property-name}".)

expand-properties (default)

All string arguments are expanded as described in Property Expansion.

repeatable

For some commands, keeping a key pressed doesn't run the command repeatedly. This prefix forces
enabling key repeat in any case.

All of the osd prefixes are still overridden by the global --osd-level settings.

Input Sections
Input sections group a set of bindings, and enable or disable them at once. In input.conf, each key
binding is assigned to an input section, rather than actually having explicit text sections.

Also see enable_section and disable_section commands.

Predefined bindings:

default

Bindings without input section are implicitly assigned to this section. It is enabled by default during
normal playback.

encode

Section which is active in encoding mode. It is enabled exclusively, so that bindings in the default
sections are ignored.

Properties
Properties are used to set mpv options during runtime, or to query arbitrary information. They can be
manipulated with the set/add/cycle commands, and retrieved with show-text, or anything else that
uses property expansion. (See Property Expansion.)

The property name is annotated with RW to indicate whether the property is generally writable.

If an option is referenced, the property will normally take/return exactly the same values as the option. In
these cases, properties are merely a way to change an option at runtime.

Property list
osd-level (RW)

See --osd-level.

osd-scale (RW)

OSD font size multiplier, see --osd-scale.

loop (RW)

See --loop.

loop-file (RW)

See --loop-file (uses yes/no).

speed (RW)

See --speed.

audio-speed-correction, video-speed-correction

Factor multiplied with speed at which the player attempts to play the file. Usually it's exactly 1.
(Display sync mode will make this useful.)

OSD formatting will display it in the form of +1.23456%, with the number being (raw - 1) * 100
for the given raw property value.

display-sync-active

Return whether --video-sync=display is actually active.

filename

Currently played file, with path stripped. If this is an URL, try to undo percent encoding as well. (The
result is not necessarily correct, but looks better for display purposes. Use the path property to get
an unmodified filename.)

file-size

Length in bytes of the source file/stream. (This is the same as ${stream-end}. For ordered
chapters and such, the size of the currently played segment is returned.)

estimated-frame-count

Total number of frames in current file.

Note

This is only an estimate. (It's computed from two unreliable quantities: fps and stream length.)

estimated-frame-number

Number of current frame in current stream.

Note

This is only an estimate. (It's computed from two unreliable quantities: fps and possibly
rounded timestamps.)

path

Full path of the currently played file.

media-title

If the currently played file has a title tag, use that.

Otherwise, if the media type is DVD, return the volume ID of DVD.

Otherwise, return the filename property.

file-format

Symbolic name of the file format. In some cases, this is a comma-separated list of format names, e.g.
mp4 is mov,mp4,m4a,3gp,3g2,mj2 (the list may grow in the future for any format).

demuxer

Name of the current demuxer. (This is useless.)

stream-path

Filename (full path) of the stream layer filename. (This is probably useless. It looks like this can be
different from path only when using e.g. ordered chapters.)

stream-pos (RW)

Raw byte position in source stream.

stream-end

Raw end position in bytes in source stream.

duration

Duration of the current file in seconds. If the duration is unknown, the property is unavailable. Note
that the file duration is not always exactly known, so this is an estimate.

This replaces the length property, which was deprecated after the mpv 0.9 release. (The semantics
are the same.)

avsync

Last A/V synchronization difference. Unavailable if audio or video is disabled.

total-avsync-change

Total A-V sync correction done. Unavailable if audio or video is disabled.

drop-frame-count

Video frames dropped by decoder, because video is too far behind audio (when using
--framedrop=decoder). Sometimes, this may be incremented in other situations, e.g. when video
packets are damaged, or the decoder doesn't follow the usual rules. Unavailable if video is disabled.

vo-drop-frame-count

Frames dropped by VO (when using --framedrop=vo).

percent-pos (RW)

Position in current file (0-100). The advantage over using this instead of calculating it out of other
properties is that it properly falls back to estimating the playback position from the byte position, if the
file duration is not known.

time-pos (RW)

Position in current file in seconds.

time-start

Return the start time of the file. (Usually 0, but some kind of files, especially transport streams, can
have a different start time.)

time-remaining

Remaining length of the file in seconds. Note that the file duration is not always exactly known, so this
is an estimate.

playtime-remaining

time-remaining scaled by the current speed.

playback-time (RW)

The playback time, which is the time relative to playback start. (This can be different from the
time-pos property if the file does not start at position 0, in which case time-pos is the source
timestamp.)

chapter (RW)

Current chapter number. The number of the first chapter is 0.

edition (RW)

Current MKV edition number. Setting this property to a different value will restart playback. The
number of the first edition is 0.

disc-titles

Number of BD/DVD titles.

This has a number of sub-properties. Replace N with the 0-based edition index.

disc-titles/count

Number of titles.

disc-titles/id

Title ID as integer. Currently, this is the same as the title index.

disc-titles/length

Length in seconds. Can be unavailable in a number of cases (currently it works for libdvdnav
only).

When querying the property with the client API using MPV_FORMAT_NODE, or with Lua
mp.get_property_native, this will return a mpv_node with the following contents:

MPV_FORMAT_NODE_ARRAY
 MPV_FORMAT_NODE_MAP (for each edition)
 "id" MPV_FORMAT_INT64
 "length" MPV_FORMAT_DOUBLE

disc-title-list

List of BD/DVD titles.

disc-title (RW)

Current BD/DVD title number. Writing works only for dvdnav:// and bd:// (and aliases for
these).

chapters

Number of chapters.

editions

Number of MKV editions.

edition-list

List of editions, current entry marked. Currently, the raw property value is useless.

This has a number of sub-properties. Replace N with the 0-based edition index.

edition-list/count

Number of editions. If there are no editions, this can be 0 or 1 (1 if there's a useless dummy
edition).

edition-list/N/id

Edition ID as integer. Use this to set the edition property. Currently, this is the same as the
edition index.

edition-list/N/default

yes if this is the default edition, no otherwise.

edition-list/N/title

Edition title as stored in the file. Not always available.

When querying the property with the client API using MPV_FORMAT_NODE, or with Lua
mp.get_property_native, this will return a mpv_node with the following contents:

MPV_FORMAT_NODE_ARRAY
 MPV_FORMAT_NODE_MAP (for each edition)
 "id" MPV_FORMAT_INT64
 "title" MPV_FORMAT_STRING
 "default" MPV_FORMAT_FLAG

ab-loop-a, ab-loop-b (RW)

Set/get A-B loop points. See corresponding options and ab_loop command. The special value no
on either of these properties disables looping.

angle (RW)

Current DVD angle.

metadata

Metadata key/value pairs.

If the property is accessed with Lua's mp.get_property_native, this returns a table with
metadata keys mapping to metadata values. If it is accessed with the client API, this returns a
MPV_FORMAT_NODE_MAP, with tag keys mapping to tag values.

For OSD, it returns a formatted list. Trying to retrieve this property as a raw string doesn't work.

This has a number of sub-properties:

metadata/by-key/<key>

Value of metadata entry <key>.

metadata/list/count

Number of metadata entries.

metadata/list/N/key

Key name of the Nth metadata entry. (The first entry is 0).

metadata/list/N/value

Value of the Nth metadata entry.

metadata/<key>

Old version of metadata/by-key/<key>. Use is discouraged, because the metadata key
string could conflict with other sub-properties.

The layout of this property might be subject to change. Suggestions are welcome how exactly this
property should work.

When querying the property with the client API using MPV_FORMAT_NODE, or with Lua
mp.get_property_native, this will return a mpv_node with the following contents:

MPV_FORMAT_NODE_MAP
 (key and string value for each metadata entry)

filtered-metadata

Like metadata, but includes only fields listed in the --display-tags option. This is the same set
of tags that is printed to the terminal.

chapter-metadata

Metadata of current chapter. Works similar to metadata property. It also allows the same access
methods (using sub-properties).

Per-chapter metadata is very rare. Usually, only the chapter name (title) is set.

For accessing other information, like chapter start, see the chapter-list property.

vf-metadata/<filter-label>

Metadata added by video filters. Accessed by the filter label, which if not explicitly specified using the
@filter-label: syntax, will be <filter-name>NN.

Works similar to metadata property. It allows the same access methods (using sub-properties).

An example of these kind of metadata are the cropping parameters added by
--vf=lavfi=cropdetect.

af-metadata/<filter-label>

Equivalent to vf-metadata/<filter-label>, but for audio filters.

pause (RW)

Pause status. This is usually yes or no. See --pause.

idle

Return yes if no file is loaded, but the player is staying around because of the --idle option.

core-idle

Return yes if the playback core is paused, otherwise no. This can be different pause in special
situations, such as when the player pauses itself due to low network cache.

This also returns yes if playback is restarting or if nothing is playing at all. In other words, it's only
no if there's actually video playing. (Behavior since mpv 0.7.0.)

cache

Network cache fill state (0-100.0).

cache-size (RW)

Network cache size in KB. This is similar to --cache. This allows to set the cache size at runtime.
Currently, it's not possible to enable or disable the cache at runtime using this property, just to resize
an existing cache.

This does not include the backbuffer size (changed after mpv 0.10.0).

Note that this tries to keep the cache contents as far as possible. To make this easier, the cache
resizing code will allocate the new cache while the old cache is still allocated.

Don't use this when playing DVD or Blu-ray.

cache-free (R)

Total free cache size in KB.

cache-used (R)

Total used cache size in KB.

cache-idle (R)

Returns yes if the cache is idle, which means the cache is filled as much as possible, and is
currently not reading more data.

demuxer-cache-duration

Approximate duration of video buffered in the demuxer, in seconds. The guess is very unreliable, and
often the property will not be available at all, even if data is buffered.

demuxer-cache-time

Approximate time of video buffered in the demuxer, in seconds. Same as
demuxer-cache-duration but returns the last timestamp of buffered data in demuxer.

demuxer-cache-idle

Returns yes if the demuxer is idle, which means the demuxer cache is filled to the requested
amount, and is currently not reading more data.

paused-for-cache

Returns yes when playback is paused because of waiting for the cache.

cache-buffering-state

Return the percentage (0-100) of the cache fill status until the player will unpause (related to
paused-for-cache).

eof-reached

Returns yes if end of playback was reached, no otherwise. Note that this is usually interesting only
if --keep-open is enabled, since otherwise the player will immediately play the next file (or exit or
enter idle mode), and in these cases the eof-reached property will logically be cleared
immediately after it's set.

seeking

Returns yes if the player is currently seeking, or otherwise trying to restart playback. (It's possible
that it returns yes while a file is loaded, or when switching ordered chapter segments. This is
because the same underlying code is used for seeking and resyncing.)

pts-association-mode (RW)

See --pts-association-mode.

hr-seek (RW)

See --hr-seek.

volume (RW)

Current volume (see --volume for details).

mute (RW)

Current mute status (yes/no).

audio-delay (RW)

See --audio-delay.

audio-codec

Audio codec selected for decoding.

audio-codec-name

Audio codec.

audio-params

Audio format as output by the audio decoder. This has a number of sub-properties:

audio-params/format

The sample format as string. This uses the same names as used in other places of mpv.

audio-params/samplerate

Samplerate.

audio-params/channels

The channel layout as a string. This is similar to what the --audio-channels accepts.

audio-params/hr-channels

As channels, but instead of the possibly cryptic actual layout sent to the audio device, return a
hopefully more human readable form. (Usually only audio-out-params/hr-channels
makes sense.)

audio-params/channel-count

Number of audio channels. This is redundant to the channels field described above.

When querying the property with the client API using MPV_FORMAT_NODE, or with Lua
mp.get_property_native, this will return a mpv_node with the following contents:

MPV_FORMAT_NODE_MAP
 "format" MPV_FORMAT_STRING
 "samplerate" MPV_FORMAT_INT64
 "channels" MPV_FORMAT_STRING
 "channel-count" MPV_FORMAT_INT64
 "hr-channels" MPV_FORMAT_STRING

audio-out-params

Same as audio-params, but the format of the data written to the audio API.

aid (RW)

Current audio track (similar to --aid).

audio (RW)

Alias for aid.

balance (RW)

Audio channel balance. (The implementation of this feature is rather odd. It doesn't change the
volumes of each channel, but instead sets up a pan matrix to mix the left and right channels.)

fullscreen (RW)

See --fullscreen.

deinterlace (RW)

See --deinterlace.

field-dominance (RW)

See --field-dominance

colormatrix (R)

Redirects to video-params/colormatrix. This parameter (as well as similar ones) can be
overridden with the format video filter.

colormatrix-input-range (R)

See colormatrix.

colormatrix-output-range (R)

See colormatrix.

colormatrix-primaries (R)

See colormatrix.

ontop (RW)

See --ontop.

border (RW)

See --border.

on-all-workspaces (RW)

See --on-all-workspaces. Unsetting may not work on all WMs.

framedrop (RW)

See --framedrop.

gamma (RW)

See --gamma.

brightness (RW)

See --brightness.

contrast (RW)

See --contrast.

saturation (RW)

See --saturation.

hue (RW)

See --hue.

hwdec (RW)

Reflects the --hwdec option.

Writing to it may change the currently used hardware decoder, if possible. (Internally, the player may
reinitialize the decoder, and will perform a seek to refresh the video properly.) You can watch the
other hwdec properties to see whether this was successful.

Unlike in mpv 0.9.x and before, this does not return the currently active hardware decoder.

hwdec-active

Return yes or no, depending on whether any type of hardware decoding is actually in use.

hwdec-detected

If software decoding is active, this returns the hardware decoder in use. Otherwise, it returns either
no, or if applicable, the currently loaded hardware decoding API. This is known only once the VO has
opened (and possibly later). With some VOs (like opengl), this is never known in advance, but only
when the decoder attempted to create the hw decoder successfully. Also, hw decoders with -copy
suffix will return no while no video is being decoded. All this reflects how detecting hw decoders are
detected and used internally in mpv.

panscan (RW)

See --panscan.

video-format

Video format as string.

video-codec

Video codec selected for decoding.

width, height

Video size. This uses the size of the video as decoded, or if no video frame has been decoded yet,
the (possibly incorrect) container indicated size.

video-params

Video parameters, as output by the decoder (with overrides like aspect etc. applied). This has a
number of sub-properties:

video-params/pixelformat

The pixel format as string. This uses the same names as used in other places of mpv.

video-params/average-bpp

Average bits-per-pixel as integer. Subsampled planar formats use a different resolution, which is
the reason this value can sometimes be odd or confusing. Can be unavailable with some
formats.

video-params/plane-depth

Bit depth for each color component as integer. This is only exposed for planar or
single-component formats, and is unavailable for other formats.

video-params/w, video-params/h

Video size as integers, with no aspect correction applied.

video-params/dw, video-params/dh

Video size as integers, scaled for correct aspect ratio.

video-params/aspect

Display aspect ratio as float.

video-params/par

Pixel aspect ratio.

video-params/colormatrix

The colormatrix in use as string. (Exact values subject to change.)

video-params/colorlevels

The colorlevels as string. (Exact values subject to change.)

video-params/primaries

The primaries in use as string. (Exact values subject to change.)

video-params/gamma

The gamma function in use as string. (Exact values subject to change.)

video-params/chroma-location

Chroma location as string. (Exact values subject to change.)

video-params/rotate

Intended display rotation in degrees (clockwise).

video-params/stereo-in

Source file stereo 3D mode. (See --video-stereo-mode option.)

When querying the property with the client API using MPV_FORMAT_NODE, or with Lua
mp.get_property_native, this will return a mpv_node with the following contents:

MPV_FORMAT_NODE_MAP
 "pixelformat" MPV_FORMAT_STRING
 "w" MPV_FORMAT_INT64
 "h" MPV_FORMAT_INT64
 "dw" MPV_FORMAT_INT64
 "dh" MPV_FORMAT_INT64
 "aspect" MPV_FORMAT_DOUBLE
 "par" MPV_FORMAT_DOUBLE
 "colormatrix" MPV_FORMAT_STRING
 "colorlevels" MPV_FORMAT_STRING
 "primaries" MPV_FORMAT_STRING
 "chroma-location" MPV_FORMAT_STRING
 "rotate" MPV_FORMAT_INT64
 "stereo-in" MPV_FORMAT_STRING

dwidth, dheight

Video display size. This is the video size after filters and aspect scaling have been applied. The
actual video window size can still be different from this, e.g. if the user resized the video window
manually.

These have the same values as video-out-params/dw and video-out-params/dh.

video-out-params

Same as video-params, but after video filters have been applied. If there are no video filters in
use, this will contain the same values as video-params. Note that this is still not necessarily what

the video window uses, since the user can change the window size, and all real VOs do their own
scaling independently from the filter chain.

Has the same sub-properties as video-params.

fps

Container FPS. This can easily contain bogus values. For videos that use modern container formats
or video codecs, this will often be incorrect.

estimated-vf-fps

Estimated/measured FPS of the video filter chain output. (If no filters are used, this corresponds to
decoder output.) This uses the average of the 10 past frame durations to calculate the FPS. It will be
inaccurate if frame-dropping is involved (such as when framedrop is explicitly enabled, or after
precise seeking). Files with imprecise timestamps (such as Matroska) might lead to unstable results.

window-scale (RW)

Window size multiplier. Setting this will resize the video window to the values contained in dwidth
and dheight multiplied with the value set with this property. Setting 1 will resize to original video
size (or to be exact, the size the video filters output). 2 will set the double size, 0.5 halves the size.

window-minimized

Return whether the video window is minimized or not.

display-names

Names of the displays that the mpv window covers. On X11, these are the xrandr names (LVDS1,
HDMI1, DP1, VGA1, etc.).

display-fps

The refresh rate of the current display. Currently, this is the lowest FPS of any display covered by the
video, as retrieved by the underlying system APIs (e.g. xrandr on X11). It is not the measured FPS.
It's not necessarily available on all platforms. Note that any of the listed facts may change any time
without a warning.

video-aspect (RW)

Video aspect, see --video-aspect.

osd-width, osd-height

Last known OSD width (can be 0). This is needed if you want to use the overlay_add command. It
gives you the actual OSD size, which can be different from the window size in some cases.

osd-par

Last known OSD display pixel aspect (can be 0).

vid (RW)

Current video track (similar to --vid).

video (RW)

Alias for vid.

video-align-x, video-align-y (RW)

See --video-align-x and --video-align-y.

video-pan-x, video-pan-y (RW)

See --video-pan-x and --video-pan-y.

video-zoom (RW)

See --video-zoom.

video-unscaled (W)

See --video-unscaled.

program (W)

Switch TS program (write-only).

sid (RW)

Current subtitle track (similar to --sid).

secondary-sid (RW)

Secondary subtitle track (see --secondary-sid).

sub (RW)

Alias for sid.

sub-delay (RW)

See --sub-delay.

sub-pos (RW)

See --sub-pos.

sub-visibility (RW)

See --sub-visibility.

sub-forced-only (RW)

See --sub-forced-only.

sub-scale (RW)

Subtitle font size multiplier.

ass-force-margins (RW)

See --ass-force-margins.

sub-use-margins (RW)

See --sub-use-margins.

ass-vsfilter-aspect-compat (RW)

See --ass-vsfilter-aspect-compat.

ass-style-override (RW)

See --ass-style-override.

stream-capture (RW)

A filename, see --stream-capture. Setting this will start capture using the given filename. Setting
it to an empty string will stop it.

tv-brightness, tv-contrast, tv-saturation, tv-hue (RW)

TV stuff.

playlist-pos (RW)

Current position on playlist. The first entry is on position 0. Writing to the property will restart playback
at the written entry.

playlist-count

Number of total playlist entries.

playlist

Playlist, current entry marked. Currently, the raw property value is useless.

This has a number of sub-properties. Replace N with the 0-based playlist entry index.

playlist/count

Number of playlist entries (same as playlist-count).

playlist/N/filename

Filename of the Nth entry.

playlist/N/current, playlist/N/playing

yes if this entry is currently playing (or being loaded). Unavailable or no otherwise. When
changing files, current and playing can be different, because the currently playing file

hasn't been unloaded yet; in this case, current refers to the new selection. (Since mpv 0.7.0.)

playlist/N/title

Name of the Nth entry. Only available if the playlist file contains such fields, and only if mpv's
parser supports it for the given playlist format.

When querying the property with the client API using MPV_FORMAT_NODE, or with Lua
mp.get_property_native, this will return a mpv_node with the following contents:

MPV_FORMAT_NODE_ARRAY
 MPV_FORMAT_NODE_MAP (for each playlist entry)
 "filename" MPV_FORMAT_STRING
 "current" MPV_FORMAT_FLAG (might be missing; since mpv 0.7.0)
 "playing" MPV_FORMAT_FLAG (same)
 "title" MPV_FORMAT_STRING (optional)

track-list

List of audio/video/sub tracks, current entry marked. Currently, the raw property value is useless.

This has a number of sub-properties. Replace N with the 0-based track index.

track-list/count

Total number of tracks.

track-list/N/id

The ID as it's used for -sid/--aid/--vid. This is unique within tracks of the same type
(sub/audio/video), but otherwise not.

track-list/N/type

String describing the media type. One of audio, video, sub.

track-list/N/src-id

Track ID as used in the source file. Not always available.

track-list/N/title

Track title as it is stored in the file. Not always available.

track-list/N/lang

Track language as identified by the file. Not always available.

track-list/N/audio-channels

For audio tracks, the number of audio channels in the audio stream. Not always accurate
(depends on container hints). Not always available.

track-list/N/albumart

yes if this is a video track that consists of a single picture, no or unavailable otherwise. This is
used for video tracks that are really attached pictures in audio files.

track-list/N/default

yes if the track has the default flag set in the file, no otherwise.

track-list/N/forced

yes if the track has the forced flag set in the file, no otherwise.

track-list/N/codec

The codec name used by this track, for example h264. Unavailable in some rare cases.

track-list/N/external

yes if the track is an external file, no otherwise. This is set for separate subtitle files.

track-list/N/external-filename

The filename if the track is from an external file, unavailable otherwise.

track-list/N/selected

yes if the track is currently decoded, no otherwise.

track-list/N/ff-index

The stream index as usually used by the FFmpeg utilities. Note that this can be potentially wrong
if a demuxer other than libavformat (--demuxer=lavf) is used. For mkv files, the index will
usually match even if the default (builtin) demuxer is used, but there is no hard guarantee.

When querying the property with the client API using MPV_FORMAT_NODE, or with Lua
mp.get_property_native, this will return a mpv_node with the following contents:

MPV_FORMAT_NODE_ARRAY
 MPV_FORMAT_NODE_MAP (for each track)
 "id" MPV_FORMAT_INT64
 "type" MPV_FORMAT_STRING
 "src-id" MPV_FORMAT_INT64
 "title" MPV_FORMAT_STRING
 "lang" MPV_FORMAT_STRING
 "audio-channels" MPV_FORMAT_INT64
 "albumart" MPV_FORMAT_FLAG
 "default" MPV_FORMAT_FLAG
 "forced" MPV_FORMAT_FLAG
 "external" MPV_FORMAT_FLAG
 "external-filename" MPV_FORMAT_STRING
 "codec" MPV_FORMAT_STRING

chapter-list

List of chapters, current entry marked. Currently, the raw property value is useless.

This has a number of sub-properties. Replace N with the 0-based chapter index.

chapter-list/count

Number of chapters.

chapter-list/N/title

Chapter title as stored in the file. Not always available.

chapter-list/N/time

Chapter start time in seconds as float.

When querying the property with the client API using MPV_FORMAT_NODE, or with Lua
mp.get_property_native, this will return a mpv_node with the following contents:

MPV_FORMAT_NODE_ARRAY
 MPV_FORMAT_NODE_MAP (for each chapter)
 "title" MPV_FORMAT_STRING
 "time" MPV_FORMAT_DOUBLE

af (RW)

See --af and the af command.

vf (RW)

See --vf and the vf command.

When querying the property with the client API using MPV_FORMAT_NODE, or with Lua
mp.get_property_native, this will return a mpv_node with the following contents:

MPV_FORMAT_NODE_ARRAY
 MPV_FORMAT_NODE_MAP (for each filter entry)

 "name" MPV_FORMAT_STRING
 "label" MPV_FORMAT_STRING [optional]
 "params" MPV_FORMAT_NODE_MAP [optional]
 "key" MPV_FORMAT_STRING
 "value" MPV_FORMAT_STRING

It's also possible to write the property using this format.

video-rotate (RW)

See --video-rotate option.

seekable

Return whether it's generally possible to seek in the current file.

partially-seekable

Return yes if the current file is considered seekable, but only because the cache is active. This
means small relative seeks may be fine, but larger seeks may fail anyway. Whether a seek will
succeed or not is generally not known in advance.

If this property returns true, seekable will also return true.

playback-abort

Return whether playback is stopped or is to be stopped. (Useful in obscure situations like during
on_load hook processing, when the user can stop playback, but the script has to explicitly end
processing.)

cursor-autohide (RW)

See --cursor-autohide. Setting this to a new value will always update the cursor, and reset the
internal timer.

osd-sym-cc

Inserts the current OSD symbol as opaque OSD control code (cc). This makes sense only with the
show-text command or options which set OSD messages. The control code is implementation
specific and is useless for anything else.

osd-ass-cc

${osd-ass-cc/0} disables escaping ASS sequences of text in OSD, ${osd-ass-cc/1} enables
it again. By default, ASS sequences are escaped to avoid accidental formatting, and this property can
disable this behavior. Note that the properties return an opaque OSD control code, which only makes
sense for the show-text command or options which set OSD messages.

Example

• --osd-status-msg='This is ${osd-ass-cc/0}{\\b1}bold text'

• show-text "This is ${osd-ass-cc/0}{\b1}bold text"

Any ASS override tags as understood by libass can be used.

Note that you need to escape the \ character, because the string is processed for C escape
sequences before passing it to the OSD code.

A list of tags can be found here: http://docs.aegisub.org/latest/ASS_Tags/

vo-configured

Return whether the VO is configured right now. Usually this corresponds to whether the video window
is visible. If the --force-window option is used, this is usually always returns yes.

http://docs.aegisub.org/latest/ASS_Tags/

video-bitrate, audio-bitrate, sub-bitrate

Bitrate values calculated on the packet level. This works by dividing the bit size of all packets
between two keyframes by their presentation timestamp distance. (This uses the timestamps are
stored in the file, so e.g. playback speed does not influence the returned values.) In particular, the
video bitrate will update only per keyframe, and show the "past" bitrate. To make the property more
UI friendly, updates to these properties are throttled in a certain way.

The unit is bits per second. OSD formatting turns these values in kilobits (or megabits, if appropriate),
which can be prevented by using the raw property value, e.g. with ${=video-bitrate}.

Note that the accuracy of these properties is influenced by a few factors. If the underlying demuxer
rewrites the packets on demuxing (done for some file formats), the bitrate might be slightly off. If
timestamps are bad or jittery (like in Matroska), even constant bitrate streams might show fluctuating
bitrate.

How exactly these values are calculated might change in the future.

In earlier versions of mpv, these properties returned a static (but bad) guess using a completely
different method.

packet-video-bitrate, packet-audio-bitrate, packet-sub-bitrate

Old and deprecated properties for video-bitrate, audio-bitrate, sub-bitrate. They behave
exactly the same, but return a value in kilobits. Also, they don't have any OSD formatting, though the
same can be achieved with e.g. ${=video-bitrate}.

These properties shouldn't be used anymore.

audio-device-list

Return the list of discovered audio devices. This is mostly for use with the client API, and reflects
what --audio-device=help with the command line player returns.

When querying the property with the client API using MPV_FORMAT_NODE, or with Lua
mp.get_property_native, this will return a mpv_node with the following contents:

MPV_FORMAT_NODE_ARRAY
 MPV_FORMAT_NODE_MAP (for each device entry)
 "name" MPV_FORMAT_STRING
 "description" MPV_FORMAT_STRING

The name is what is to be passed to the --audio-device option (and often a rather cryptic audio
API-specific ID), while description is human readable free form text. The description is an empty
string if none was received.

The special entry with the name set to auto selects the default audio output driver and the default
device.

The property can be watched with the property observation mechanism in the client API and in Lua
scripts. (Technically, change notification is enabled the first time this property is read.)

audio-device (RW)

Set the audio device. This directly reads/writes the --audio-device option, but on write accesses,
the audio output will be scheduled for reloading.

Writing this property while no audio output is active will not automatically enable audio. (This is also
true in the case when audio was disabled due to reinitialization failure after a previous write access to
audio-device.)

This property also doesn't tell you which audio device is actually in use.

How these details are handled may change in the future.

current-vo

Current video output driver (name as used with --vo).

current-ao

Current audio output driver (name as used with --ao).

audio-out-detected-device

Return the audio device selected by the AO driver (only implemented for some drivers: currently only
coreaudio).

working-directory

Return the working directory of the mpv process. Can be useful for JSON IPC users, because the
command line player usually works with relative paths.

protocol-list

List of protocol prefixes potentially recognized by the player. They are returned without trailing ://
suffix (which is still always required). In some cases, the protocol will not actually be supported
(consider https if ffmpeg is not compiled with TLS support).

mpv-version

Return the mpv version/copyright string. Depending on how the binary was built, it might contain
either a release version, or just a git hash.

mpv-configuration

Return the configuration arguments which were passed to the build system (typically the way
./waf configure ... was invoked).

options/<name> (RW)

Read-only access to value of option --<name>. Most options can be changed at runtime by writing to
this property. Note that many options require reloading the file for changes to take effect. If there is an
equivalent property, prefer setting the property instead.

file-local-options/<name>

Similar to options/<name>, but when setting an option through this property, the option is reset to
its old value once the current file has stopped playing. Trying to write an option while no file is playing
(or is being loaded) results in an error.

(Note that if an option is marked as file-local, even options/ will access the local value, and the
old value, which will be restored on end of playback, can not be read or written until end of
playback.)

option-info/<name>

Additional per-option information.

This has a number of sub-properties. Replace <name> with the name of a top-level option. No
guarantee of stability is given to any of these sub-properties - they may change radically in the
feature.

option-info/<name>/name

Returns the name of the option.

option-info/<name>/type

Return the name of the option type, like String or Integer. For many complex types, this isn't
very accurate.

option-info/<name>/set-from-commandline

Return yes if the option was set from the mpv command line, no otherwise. What this is set to
if the option is e.g. changed at runtime is left undefined (meaning it could change in the future).

option-info/<name>/set-locally

Return yes if the option was set per-file. This is the case with automatically loaded profiles,
file-dir configs, and other cases. It means the option value will be restored to the value before
playback start when playback ends.

option-info/<name>/default-value

The default value of the option. May not always be available.

option-info/<name>/min, option-info/<name>/max

Integer minimum and maximum values allowed for the option. Only available if the options are
numeric, and the minimum/maximum has been set internally. It's also possible that only one of
these is set.

option-info/<name>/choices

If the option is a choice option, the possible choices. Choices that are integers may or may not
be included (they can be implied by min and max). Note that options which behave like choice
options, but are not actual choice options internally, may not have this info available.

property-list

Return the list of top-level properties.

Property Expansion
All string arguments to input commands as well as certain options (like --term-playing-msg) are
subject to property expansion. Note that property expansion does not work in places where e.g. numeric
parameters are expected. (For example, the add command does not do property expansion. The set
command is an exception and not a general rule.)

Example for input.conf

i show-text "Filename: ${filename}"

shows the filename of the current file when pressing the i key

Within input.conf, property expansion can be inhibited by putting the raw prefix in front of commands.

The following expansions are supported:

${NAME}

Expands to the value of the property NAME. If retrieving the property fails, expand to an error string.
(Use ${NAME:} with a trailing : to expand to an empty string instead.) If NAME is prefixed with =,
expand to the raw value of the property (see section below).

${NAME:STR}

Expands to the value of the property NAME, or STR if the property cannot be retrieved. STR is
expanded recursively.

${?NAME:STR}

Expands to STR (recursively) if the property NAME is available.

${!NAME:STR}

Expands to STR (recursively) if the property NAME cannot be retrieved.

${?NAME==VALUE:STR}

Expands to STR (recursively) if the property NAME expands to a string equal to VALUE. You can
prefix NAME with = in order to compare the raw value of a property (see section below). If the
property is unavailable, or other errors happen when retrieving it, the value is never considered equal.
Note that VALUE can't contain any of the characters : or }. Also, it is possible that escaping with "
or % might be added in the future, should the need arise.

${!NAME==VALUE:STR}

Same as with the ? variant, but STR is expanded if the value is not equal. (Using the same
semantics as with ?.)

$$

Expands to $.

$}

Expands to }. (To produce this character inside recursive expansion.)

$>

Disable property expansion and special handling of $ for the rest of the string.

In places where property expansion is allowed, C-style escapes are often accepted as well. Example:

• \n becomes a newline character

• \\ expands to \

Raw and Formatted Properties
Normally, properties are formatted as human-readable text, meant to be displayed on OSD or on the
terminal. It is possible to retrieve an unformatted (raw) value from a property by prefixing its name with =.
These raw values can be parsed by other programs and follow the same conventions as the options
associated with the properties.

Examples

• ${time-pos} expands to 00:14:23 (if playback position is at 14 minutes 23 seconds)

• ${=time-pos} expands to 863.4 (same time, plus 400 milliseconds - milliseconds are
normally not shown in the formatted case)

Sometimes, the difference in amount of information carried by raw and formatted property values can be
rather big. In some cases, raw values have more information, like higher precision than seconds with
time-pos. Sometimes it is the other way around, e.g. aid shows track title and language in the
formatted case, but only the track number if it is raw.

ON SCREEN CONTROLLER
The On Screen Controller (short: OSC) is a minimal GUI integrated with mpv to offer basic
mouse-controllability. It is intended to make interaction easier for new users and to enable precise and
direct seeking.

The OSC is enabled by default if mpv was compiled with Lua support. It can be disabled entirely using the
--osc=no option.

Using the OSC
By default, the OSC will show up whenever the mouse is moved inside the player window and will hide if
the mouse is not moved outside the OSC for 0.5 seconds or if the mouse leaves the window.

The Interface

+------------------+-----------+--------------------+
| playlist prev | title | playlist next |
+-------+------+---+--+------+-+----+------+--------+
| audio | skip | seek | | seek | skip | full |
+-------+ back | back | play | frwd | frwd | screen |
| sub | | | | | | |
+-------+------+------+------+------+------+--------+
| seekbar |
+----------------+--------------+-------------------+
| time passed | cache status | time remaining |
+----------------+--------------+-------------------+

playlist prev

left-click play previous file in playlist

shift+L-click show playlist

title

Displays current media-title or filename

left-click show playlist position and length and full title

right-click show filename

playlist next

left-click play next file in playlist

shift+L-click show playlist

audio and sub

Displays selected track and amount of available tracks

left-click cycle audio/sub tracks forward

right-click cycle audio/sub tracks backwards

shift+L-click show available audio/sub tracks

skip back

left-click go to beginning of chapter / previous chapter

shift+L-click show chapters

seek back

left-click skip back 5 seconds

right-click skip back 30 seconds

shift-L-click skip back 1 frame

play

left-click toggle play/pause

seek frwd

left-click skip forward 10 seconds

right-click skip forward 60 seconds

shift-L-click skip forward 1 frame

skip frwd

left-click go to next chapter

shift+L-click show chapters

fullscreen

left-click toggle fullscreen

seekbar

Indicates current playback position and position of chapters

left-click seek to position

time passed

Shows current playback position timestamp

left-click toggle displaying timecodes with milliseconds

cache status

Shows current cache fill status (only visible when below 45%)

time remaining

Shows remaining playback time timestamp

left-click toggle between total and remaining time

Key Bindings
These key bindings are active by default if nothing else is already bound to these keys. In case of
collision, the function needs to be bound to a different key. See the Script Commands section.

del Hide the OSC permanently until mpv is restarted.

Configuration
The OSC offers limited configuration through a config file lua-settings/osc.conf placed in mpv's
user dir and through the --script-opts command-line option. Options provided through the
command-line will override those from the config file.

Config Syntax
The config file must exactly follow the following syntax:

this is a comment
optionA=value1
optionB=value2

can only be used at the beginning of a line and there may be no spaces around the = or anywhere else.

Command-line Syntax
To avoid collisions with other scripts, all options need to be prefixed with osc-.

Example:

--script-opts=osc-optionA=value1,osc-optionB=value2

Configurable Options
showwindowed

Default: yes
Enable the OSC when windowed

showfullscreen

Default: yes
Enable the OSC when fullscreen

scalewindowed

Default: 1.0
Scale factor of the OSC when windowed

scalefullscreen

Default: 1.0
Scale factor of the OSC when fullscreen

scaleforcedwindow

Default: 2.0
Scale factor of the OSC when rendered on a forced (dummy) window

vidscale

Default: yes
Scale the OSC with the video
no tries to keep the OSC size constant as much as the window size allows

valign

Default: 0.8
Vertical alignment, -1 (top) to 1 (bottom)

halign

Default: 0.0
Horizontal alignment, -1 (left) to 1 (right)

boxalpha

Default: 80
Alpha of the background box, 0 (opaque) to 255 (fully transparent)

hidetimeout

Default: 500
Duration in ms until the OSC hides if no mouse movement, negative value disables auto-hide

fadeduration

Default: 200
Duration of fade out in ms, 0 = no fade

deadzonesize

Default: 0
Size of the deadzone. The deadzone is an area that makes the mouse act like leaving the window.
Movement there won't make the OSC show up and it will hide immediately if the mouse enters it. The
deadzone starts at the window border opposite to the OSC and the size controls how much of the
window it will span. Values between 0 and 1.

minmousemove

Default: 3
Minimum amount of pixels the mouse has to move between ticks to make the OSC show up

layout

Default: box
The layout for the OSC. Currently available are: box, slimbox, bottombar and topbar.

seekbarstyle

Default: slider
Sets the style of the seekbar, slider (diamond marker) or bar (fill)

timetotal

Default: no
Show total time instead of time remaining

timems

Default: no
Display timecodes with milliseconds

Script Commands
The OSC script listens to certain script commands. These commands can bound in input.conf, or sent
by other scripts.

enable-osc

Undoes disable-osc or the effect of the del key.

disable-osc

Hide the OSC permanently. This is also what the del key does.

osc-message

Show a message on screen using the OSC. First argument is the message, second the duration in
seconds.

Example

You could put this into input.conf to hide the OSC with the a key and to unhide it with b:

a script_message disable-osc
b script_message enable-osc

LUA SCRIPTING
mpv can load Lua scripts. Scripts passed to the --script option, or found in the scripts subdirectory
of the mpv configuration directory (usually ~/.config/mpv/scripts/) will be loaded on program start.
mpv also appends the scripts subdirectory to the end of Lua's path so you can import scripts from
there too. Since it's added to the end, don't name scripts you want to import the same as Lua libraries
because they will be overshadowed by them.

mpv provides the built-in module mp, which contains functions to send commands to the mpv core and to
retrieve information about playback state, user settings, file information, and so on.

These scripts can be used to control mpv in a similar way to slave mode. Technically, the Lua code uses
the client API internally.

Example
A script which leaves fullscreen mode when the player is paused:

function on_pause_change(name, value)
 if value == true then
 mp.set_property("fullscreen", "no")
 end
end
mp.observe_property("pause", "bool", on_pause_change)

Details on the script initialization and lifecycle
Your script will be loaded by the player at program start from the scripts configuration subdirectory, or
from a path specified with the --script option. Some scripts are loaded internally (like --osc). Each
script runs in its own thread. Your script is first run "as is", and once that is done, the event loop is
entered. This event loop will dispatch events received by mpv and call your own event handlers which you
have registered with mp.register_event, or timers added with mp.add_timeout or similar.

When the player quits, all scripts will be asked to terminate. This happens via a shutdown event, which
by default will make the event loop return. If your script got into an endless loop, mpv will probably behave
fine during playback (unless the player is suspended, see mp.suspend), but it won't terminate when
quitting, because it's waiting on your script.

Internally, the C code will call the Lua function mp_event_loop after loading a Lua script. This function
is normally defined by the default prelude loaded before your script (see player/lua/defaults.lua
in the mpv sources). The event loop will wait for events and dispatch events registered with
mp.register_event. It will also handle timers added with mp.add_timeout and similar (by waiting
with a timeout).

Since mpv 0.6.0, the player will wait until the script is fully loaded before continuing normal operation. The
player considers a script as fully loaded as soon as it starts waiting for mpv events (or it exits). In practice
this means the player will more or less hang until the script returns from the main chunk (and
mp_event_loop is called), or the script calls mp_event_loop or mp.dispatch_events directly. This
is done to make it possible for a script to fully setup event handlers etc. before playback actually starts. In
older mpv versions, this happened asynchronously.

mp functions
The mp module is preloaded, although it can be loaded manually with require 'mp'. It provides the
core client API.

mp.command(string)

Run the given command. This is similar to the commands used in input.conf. See List of Input
Commands.

By default, this will show something on the OSD (depending on the command), as if it was used in
input.conf. See Input Command Prefixes how to influence OSD usage per command.

Returns true on success, or nil, error on error.

mp.commandv(arg1, arg2, ...)

Similar to mp.command, but pass each command argument as separate parameter. This has the
advantage that you don't have to care about quoting and escaping in some cases.

Example:

mp.command("loadfile " .. filename .. " append")
mp.commandv("loadfile", filename, "append")

These two commands are equivalent, except that the first version breaks if the filename contains
spaces or certain special characters.

Note that properties are not expanded. You can use either mp.command, the expand-properties
prefix, or the mp.get_property family of functions.

Unlike mp.command, this will not use OSD by default either (except for some OSD-specific
commands).

mp.command_native(table [,def])

Similar to mp.commandv, but pass the argument list as table. This has the advantage that in at least
some cases, arguments can be passed as native types.

Returns a result table on success (usually empty), or def, error on error. def is the second
parameter provided to the function, and is nil if it's missing.

mp.get_property(name [,def])

Return the value of the given property as string. These are the same properties as used in input.conf.
See Properties for a list of properties. The returned string is formatted similar to ${=name} (see
Property Expansion).

Returns the string on success, or def, error on error. def is the second parameter provided to
the function, and is nil if it's missing.

mp.get_property_osd(name [,def])

Similar to mp.get_property, but return the property value formatted for OSD. This is the same
string as printed with ${name} when used in input.conf.

Returns the string on success, or def, error on error. def is the second parameter provided to
the function, and is an empty string if it's missing. Unlike get_property(), assigning the return
value to a variable will always result in a string.

mp.get_property_bool(name [,def])

Similar to mp.get_property, but return the property value as Boolean.

Returns a Boolean on success, or def, error on error.

mp.get_property_number(name [,def])

Similar to mp.get_property, but return the property value as number.

Note that while Lua does not distinguish between integers and floats, mpv internals do. This function
simply request a double float from mpv, and mpv will usually convert integer property values to float.

Returns a number on success, or def, error on error.

mp.get_property_native(name [,def])

Similar to mp.get_property, but return the property value using the best Lua type for the property.
Most time, this will return a string, Boolean, or number. Some properties (for example
chapter-list) are returned as tables.

Returns a value on success, or def, error on error. Note that nil might be a possible, valid
value too in some corner cases.

mp.set_property(name, value)

Set the given property to the given string value. See mp.get_property and Properties for more
information about properties.

Returns true on success, or nil, error on error.

mp.set_property_bool(name, value)

Similar to mp.set_property, but set the given property to the given Boolean value.

mp.set_property_number(name, value)

Similar to mp.set_property, but set the given property to the given numeric value.

Note that while Lua does not distinguish between integers and floats, mpv internals do. This function
will test whether the number can be represented as integer, and if so, it will pass an integer value to
mpv, otherwise a double float.

mp.set_property_native(name, value)

Similar to mp.set_property, but set the given property using its native type.

Since there are several data types which can not represented natively in Lua, this might not always
work as expected. For example, while the Lua wrapper can do some guesswork to decide whether a
Lua table is an array or a map, this would fail with empty tables. Also, there are not many properties
for which it makes sense to use this, instead of set_property, set_property_bool,
set_property_number. For these reasons, this function should probably be avoided for now,
except for properties that use tables natively.

mp.get_time()

Return the current mpv internal time in seconds as a number. This is basically the system time, with
an arbitrary offset.

mp.add_key_binding(key, name|fn [,fn [,flags]])

Register callback to be run on a key binding. The binding will be mapped to the given key, which is a
string describing the physical key. This uses the same key names as in input.conf, and also allows
combinations (e.g. ctrl+a).

After calling this function, key presses will cause the function fn to be called (unless the user
remapped the key with another binding).

The name argument should be a short symbolic string. It allows the user to remap the key binding via
input.conf using the script_message command, and the name of the key binding (see below for
an example). The name should be unique across other bindings in the same script - if not, the
previous binding with the same name will be overwritten. You can omit the name, in which case a
random name is generated internally.

The last argument is used for optional flags. This is a table, which can have the following entries:

repeatable

If set to true, enables key repeat for this specific binding.

complex

If set to true, then fn is called on both key up and down events (as well as key repeat, if
enabled), with the first argument being a table. This table has an event entry, which is set
to one of the strings down, repeat, up or press (the latter if key up/down can't be
tracked). It further has an is_mouse entry, which tells whether the event was caused by a
mouse button.

Internally, key bindings are dispatched via the script_message_to or script_binding input
commands and mp.register_script_message.

Trying to map multiple commands to a key will essentially prefer a random binding, while the other
bindings are not called. It is guaranteed that user defined bindings in the central input.conf are
preferred over bindings added with this function (but see mp.add_forced_key_binding).

Example:

function something_handler()
 print("the key was pressed")
end
mp.add_key_binding("x", "something", something_handler)

This will print the message the key was pressed when x was pressed.

The user can remap these key bindings. Then the user has to put the following into his input.conf to
remap the command to the y key:

y script_binding something

This will print the message when the key y is pressed. (x will still work, unless the user remaps it.)

You can also explicitly send a message to a named script only. Assume the above script was using
the filename fooscript.lua:

y script_binding fooscript.something

mp.add_forced_key_binding(...)

This works almost the same as mp.add_key_binding, but registers the key binding in a way that
will overwrite the user's custom bindings in his input.conf. (mp.add_key_binding overwrites
default key bindings only, but not those by the user's input.conf.)

mp.remove_key_binding(name)

Remove a key binding added with mp.add_key_binding or mp.add_forced_key_binding.
Use the same name as you used when adding the bindings. It's not possible to remove bindings for
which you omitted the name.

mp.register_event(name, fn)

Call a specific function when an event happens. The event name is a string, and the function fn is a
Lua function value.

Some events have associated data. This is put into a Lua table and passed as argument to fn. The
Lua table by default contains a name field, which is a string containing the event name. If the event
has an error associated, the error field is set to a string describing the error, on success it's not set.

If multiple functions are registered for the same event, they are run in registration order, which the
first registered function running before all the other ones.

Returns true if such an event exists, false otherwise.

See Events and List of events for details.

mp.unregister_event(fn)

Undo mp.register_event(..., fn). This removes all event handlers that are equal to the fn
parameter. This uses normal Lua == comparison, so be careful when dealing with closures.

mp.observe_property(name, type, fn)

Watch a property for changes. If the property name is changed, then the function fn(name) will be
called. type can be nil, or be set to one of none, native, bool, string, or number. none is
the same as nil. For all other values, the new value of the property will be passed as second
argument to fn, using mp.get_property_<type> to retrieve it. This means if type is for
example string, fn is roughly called as in fn(name, mp.get_property_string(name)).

If possible, change events are coalesced. If a property is changed a bunch of times in a row, only the
last change triggers the change function. (The exact behavior depends on timing and other things.)

In some cases the function is not called even if the property changes. Whether this can happen
depends on the property.

If the type is none or nil, sporadic property change events are possible. This means the change
function fn can be called even if the property doesn't actually change.

mp.unobserve_property(fn)

Undo mp.observe_property(..., fn). This removes all property handlers that are equal to the
fn parameter. This uses normal Lua == comparison, so be careful when dealing with closures.

mp.add_timeout(seconds, fn)

Call the given function fn when the given number of seconds has elapsed. Note that the number of
seconds can be fractional. For now, the timer's resolution may be as low as 50 ms, although this will
be improved in the future.

This is a one-shot timer: it will be removed when it's fired.

Returns a timer object. See mp.add_periodic_timer for details.

mp.add_periodic_timer(seconds, fn)

Call the given function periodically. This is like mp.add_timeout, but the timer is re-added after the
function fn is run.

Returns a timer object. The timer object provides the following methods:

stop()

Disable the timer. Does nothing if the timer is already disabled. This will remember the
current elapsed time when stopping, so that resume() essentially unpauses the timer.

kill()

Disable the timer. Resets the elapsed time. resume() will restart the timer.

resume()

Restart the timer. If the timer was disabled with stop(), this will resume at the time it was
stopped. If the timer was disabled with kill(), or if it's a previously fired one-shot timer
(added with add_timeout()), this starts the timer from the beginning, using the initially
configured timeout.

timeout (RW)

This field contains the current timeout period. This value is not updated as time progresses.
It's only used to calculate when the timer should fire next when the timer expires.

If you write this, you can call t:kill() ; t:resume() to reset the current timeout to the
new one. (t:stop() won't use the new timeout.)

oneshot (RW)

Whether the timer is periodic (false) or fires just once (true). This value is used when the
timer expires (but before the timer callback function fn is run).

Note that these are method, and you have to call them using : instead of . (Refer to
http://www.lua.org/manual/5.2/manual.html#3.4.9 .)

Example:

seconds = 0
timer = mp.add_periodic_timer(1, function()
 print("called every second")
 # stop it after 10 seconds
 seconds = seconds + 1
 if seconds >= 10 then
 timer:kill()
 end
end)

mp.get_opt(key)

Return a setting from the --script-opts option. It's up to the user and the script how this
mechanism is used. Currently, all scripts can access this equally, so you should be careful about
collisions.

mp.get_script_name()

Return the name of the current script. The name is usually made of the filename of the script, with
directory and file extension removed. If there are several script which would have the same name, it's
made unique by appending a number.

http://www.lua.org/manual/5.2/manual.html#3.4.9

Example

The script /path/to/fooscript.lua becomes fooscript.

mp.osd_message(text [,duration])

Show an OSD message on the screen. duration is in seconds, and is optional (uses
--osd-duration by default).

Advanced mp functions
These also live in the mp module, but are documented separately as they are useful only in special
situations.

mp.suspend()

Suspend the mpv main loop. There is a long-winded explanation of this in the C API function
mpv_suspend(). In short, this prevents the player from displaying the next video frame, so that you
don't get blocked when trying to access the player.

This is automatically called by the event handler.

mp.resume()

Undo one mp.suspend() call. mp.suspend() increments an internal counter, and
mp.resume() decrements it. When 0 is reached, the player is actually resumed.

mp.resume_all()

This resets the internal suspend counter and resumes the player. (It's like calling mp.resume() until
the player is actually resumed.)

You might want to call this if you're about to do something that takes a long time, but doesn't really
need access to the player (like a network operation). Note that you still can access the player at any
time.

mp.get_wakeup_pipe()

Calls mpv_get_wakeup_pipe() and returns the read end of the wakeup pipe. (See client.h for
details.)

mp.get_next_timeout()

Return the relative time in seconds when the next timer (mp.add_timeout and similar) expires. If
there is no timer, return nil.

mp.dispatch_events([allow_wait])

This can be used to run custom event loops. If you want to have direct control what the Lua script
does (instead of being called by the default event loop), you can set the global variable
mp_event_loop to your own function running the event loop. From your event loop, you should call
mp.dispatch_events() to dequeue and dispatch mpv events.

If the allow_wait parameter is set to true, the function will block until the next event is received or
the next timer expires. Otherwise (and this is the default behavior), it returns as soon as the event
loop is emptied. It's strongly recommended to use mp.get_next_timeout() and
mp.get_wakeup_pipe() if you're interested in properly working notification of new events and
working timers.

This function calls mp.suspend() and mp.resume_all() on its own.

mp.enable_messages(level)

Set the minimum log level of which mpv message output to receive. These messages are normally
printed to the terminal. By calling this function, you can set the minimum log level of messages

which should be received with the log-message event. See the description of this event for details.
The level is a string, see msg.log for allowed log levels.

mp.register_script_message(name, fn)

This is a helper to dispatch script_message or script_message_to invocations to Lua
functions. fn is called if script_message or script_message_to (with this script as
destination) is run with name as first parameter. The other parameters are passed to fn. If a
message with the given name is already registered, it's overwritten.

Used by mp.add_key_binding, so be careful about name collisions.

mp.unregister_script_message(name)

Undo a previous registration with mp.register_script_message. Does nothing if the name
wasn't registered.

mp.msg functions
This module allows outputting messages to the terminal, and can be loaded with require 'mp.msg'.

msg.log(level, ...)

The level parameter is the message priority. It's a string and one of fatal, error, warn, info, v,
debug. The user's settings will determine which of these messages will be visible. Normally, all
messages are visible, except v and debug.

The parameters after that are all converted to strings. Spaces are inserted to separate multiple
parameters.

You don't need to add newlines.

msg.fatal(...), msg.error(...), msg.warn(...), msg.info(...), msg.verbose(...),
msg.debug(...)

All of these are shortcuts and equivalent to the corresponding msg.log(level, ...) call.

mp.options functions
mpv comes with a built-in module to manage options from config-files and the command-line. All you have
to do is to supply a table with default options to the read_options function. The function will overwrite the
default values with values found in the config-file and the command-line (in that order).

options.read_options(table [, identifier])

A table with key-value pairs. The type of the default values is important for converting the values
read from the config file or command-line back. Do not use nil as a default value!

The identifier is used to identify the config-file and the command-line options. These needs to
unique to avoid collisions with other scripts. Defaults to mp.get_script_name().

Example implementation:

require 'mp.options'
local options = {
 optionA = "defaultvalueA",
 optionB = -0.5,
 optionC = true,
}
read_options(options, "myscript")
print(options.optionA)

The config file will be stored in lua-settings/identifier.conf in mpv's user folder. Comment lines
can be started with # and stray spaces are not removed. Boolean values will be represented with yes/no.

Example config:

comment
optionA=Hello World
optionB=9999
optionC=no

Command-line options are read from the --script-opts parameter. To avoid collisions, all keys have
to be prefixed with identifier-.

Example command-line:

--script-opts=myscript-optionA=TEST,myscript-optionB=0,myscript-optionC=yes

mp.utils options
This built-in module provides generic helper functions for Lua, and have strictly speaking nothing to do
with mpv or video/audio playback. They are provided for convenience. Most compensate for Lua's scarce
standard library.

Be warned that any of these functions might disappear any time. They are not strictly part of the
guaranteed API.

utils.getcwd()

Returns the directory that mpv was launched from. On error, nil, error is returned.

utils.readdir(path [, filter])

Enumerate all entries at the given path on the filesystem, and return them as array. Each entry is a
directory entry (without the path). The list is unsorted (in whatever order the operating system returns
it).

If the filter argument is given, it must be one of the following strings:

files

List regular files only. This excludes directories, special files (like UNIX device files or
FIFOs), and dead symlinks. It includes UNIX symlinks to regular files.

dirs

List directories only, or symlinks to directories. . and .. are not included.

normal

Include the results of both files and dirs. (This is the default.)

all

List all entries, even device files, dead symlinks, FIFOs, and the . and .. entries.

On error, nil, error is returned.

utils.split_path(path)

Split a path into directory component and filename component, and return them. The first return value
is always the directory. The second return value is the trailing part of the path, the directory entry.

utils.join_path(p1, p2)

Return the concatenation of the 2 paths. Tries to be clever. For example, if `p2 is an absolute path,
p2 is returned without change.

utils.subprocess(t)

Runs an external process and waits until it exits. Returns process status and the captured output.

The parameter t is a table. The function reads the following entries:

args

Array of strings. The first array entry is the executable. This can be either an absolute path,
or a filename with no path components, in which case the PATH environment variable is
used to resolve the executable. The other array elements are passed as command line
arguments.

cancellable

Optional. If set to true (default), then if the user stops playback or goes to the next file
while the process is running, the process will be killed.

max_size

Optional. The maximum size in bytes of the data that can be captured from stdout. (Default:
16 MB.)

The function returns a table as result with the following entries:

status

The raw exit status of the process. It will be negative on error.

stdout

Captured output stream as string, limited to max_size.

error

nil on success. The string killed if the process was terminated in an unusual way. The
string init if the process could not be started.

On Windows, killed is only returned when the process has been killed by mpv as a result
of cancellable being set to true.

killed_by_us

Set to true if the process has been killed by mpv as a result of cancellable being set to
true.

In all cases, mp.resume_all() is implicitly called.

utils.parse_json(str [, trail])

Parses the given string argument as JSON, and returns it as a Lua table. On error, returns
nil, error. (Currently, error is just a string reading error, because there is no fine-grained
error reporting of any kind.)

The returned value uses similar conventions as mp.get_property_native() to distinguish
empty objects and arrays.

If the trail parameter is true (or any value equal to true), then trailing non-whitespace text is
tolerated by the function, and the trailing text is returned as 3rd return value. (The 3rd return value is
always there, but with trail set, no error is raised.)

utils.format_json(v)

Format the given Lua table (or value) as a JSON string and return it. On error, returns nil, error.
(Errors usually only happen on value types incompatible with JSON.)

The argument value uses similar conventions as mp.set_property_native() to distinguish
empty objects and arrays.

utils.to_string(v)

Turn the given value into a string. Formats tables and their contents. This doesn't do anything special;
it is only needed because Lua is terrible.

Events
Events are notifications from player core to scripts. You can register an event handler with
mp.register_event.

Note that all scripts (and other parts of the player) receive events equally, and there's no such thing as
blocking other scripts from receiving events.

Example:

function my_fn(event)
 print("start of playback!")
end

mp.register_event("file-loaded", my_fn)

List of events
start-file

Happens right before a new file is loaded. When you receive this, the player is loading the file (or
possibly already done with it).

end-file

Happens after a file was unloaded. Typically, the player will load the next file right away, or quit if this
was the last file.

The event has the reason field, which takes one of these values:

eof

The file has ended. This can (but doesn't have to) include incomplete files or broken network
connections under circumstances.

stop

Playback was ended by a command.

quit

Playback was ended by sending the quit command.

error

An error happened. In this case, an error field is present with the error string.

redirect

Happens with playlists and similar. Details see MPV_END_FILE_REASON_REDIRECT in the C
API.

unknown

Unknown. Normally doesn't happen, unless the Lua API is out of sync with the C API. (Likewise,
it could happen that your script gets reason strings that did not exist yet at the time your script
was written.)

file-loaded

Happens after a file was loaded and begins playback.

seek

Happens on seeking. (This might include cases when the player seeks internally, even without user
interaction. This includes e.g. segment changes when playing ordered chapters Matroska files.)

playback-restart

Start of playback after seek or after file was loaded.

idle

Idle mode is entered. This happens when playback ended, and the player was started with --idle
or --force-window. This mode is implicitly ended when the start-file or shutdown events
happen.

tick

Called after a video frame was displayed. This is a hack, and you should avoid using it. Use timers
instead and maybe watch pausing/unpausing events to avoid wasting CPU when the player is
paused.

shutdown

Sent when the player quits, and the script should terminate. Normally handled automatically. See
Details on the script initialization and lifecycle.

log-message

Receives messages enabled with mp.enable_messages. The message data is contained in the
table passed as first parameter to the event handler. The table contains, in addition to the default
event fields, the following fields:

prefix

The module prefix, identifies the sender of the message. This is what the terminal player puts in
front of the message text when using the --v option, and is also what is used for
--msg-level.

level

The log level as string. See msg.log for possible log level names. Note that later versions of
mpv might add new levels or remove (undocumented) existing ones.

text

The log message. The text will end with a newline character. Sometimes it can contain multiple
lines.

Keep in mind that these messages are meant to be hints for humans. You should not parse them,
and prefix/level/text of messages might change any time.

get-property-reply

Undocumented (not useful for Lua scripts).

set-property-reply

Undocumented (not useful for Lua scripts).

command-reply

Undocumented (not useful for Lua scripts).

client-message

Undocumented (used internally).

video-reconfig

Happens on video output or filter reconfig.

audio-reconfig

Happens on audio output or filter reconfig.

The following events also happen, but are deprecated: tracks-changed, track-switched, pause,
unpause, metadata-update, chapter-change. Use mp.observe_property() instead.

Extras
This documents experimental features, or features that are "too special" to guarantee a stable interface.

mp.add_hook(type, priority, fn)

Add a hook callback for type (a string identifying a certain kind of hook). These hooks allow the
player to call script functions and wait for their result (normally, the Lua scripting interface is
asynchronous from the point of view of the player core). priority is an arbitrary integer that allows
ordering among hooks of the same kind. Using the value 50 is recommended as neutral default value.
fn is the function that will be called during execution of the hook.

See Hooks for currently existing hooks and what they do - only the hook list is interesting; handling
hook execution is done by the Lua script function automatically.

JSON IPC
mpv can be controlled by external programs using the JSON-based IPC protocol. It can be enabled by
specifying the path to a unix socket using the option --input-unix-socket. Clients can connect to this
socket and send commands to the player or receive events from it.

Warning

This is not intended to be a secure network protocol. It is explicitly insecure: there is no
authentication, no encryption, and the commands themselves are insecure too. For example, the
run command is exposed, which can run arbitrary system commands. The use-case is controlling
the player locally. This is not different from the MPlayer slave protocol.

Socat example
You can use the socat tool to send commands (and receive reply) from the shell. Assuming mpv was
started with:

mpv file.mkv --input-unix-socket=/tmp/mpvsocket

Then you can control it using socat:

> echo '{ "command": ["get_property", "playback-time"] }' | socat - /tmp/mpvsocket
{"data":190.482000,"error":"success"}

In this case, socat copies data between stdin/stdout and the mpv socket connection.

See the --idle option how to make mpv start without exiting immediately or playing a file.

It's also possible to send input.conf style text-only commands:

> echo 'show_text ${playback-time}' | socat - /tmp/mpvsocket

But you won't get a reply over the socket. (This particular command shows the playback time on the
player's OSD.)

Protocol
Clients can execute commands on the player by sending JSON messages of the following form:

{ "command": ["command_name", "param1", "param2", ...] }

where command_name is the name of the command to be executed, followed by a list of parameters.
Parameters must be formatted as native JSON values (integers, strings, booleans, ...). Every message
must be terminated with \n. Additionally, \n must not appear anywhere inside the message. In practice
this means that messages should be minified before being sent to mpv.

mpv will then send back a reply indicating whether the command was run correctly, and an additional field
holding the command-specific return data (it can also be null).

{ "error": "success", "data": null }

mpv will also send events to clients with JSON messages of the following form:

{ "event": "event_name" }

where event_name is the name of the event. Additional event-specific fields can also be present. See
List of events for a list of all supported events.

Because events can occur at any time, it may be difficult at times to determine which response goes with
which command. Commands may optionally include a request_id which, if provided in the command
request, will be copied verbatim into the response. mpv does not intrepret the request_id in any way; it
is solely for the use of the requester.

For example, this request:

{ "command": ["get_property", "time-pos"], "request_id": 100 }

Would generate this response:

{ "error": "success", "data": 1.468135, "request_id": 100 }

All commands, replies, and events are separated from each other with a line break character (\n).

If the first character (after skipping whitespace) is not {, the command will be interpreted as non-JSON
text command, as they are used in input.conf (or mpv_command_string() in the client API).
Additionally, line starting with # and empty lines are ignored.

Currently, embedded 0 bytes terminate the current line, but you should not rely on this.

Commands
Additionally to the commands described in List of Input Commands, a few extra commands can also be
used as part of the protocol:

client_name

Return the name of the client as string. This is the string ipc-N with N being an integer number.

get_time_us

Return the current mpv internal time in microseconds as a number. This is basically the system time,
with an arbitrary offset.

get_property

Return the value of the given property. The value will be sent in the data field of the replay message.

Example:

{ "command": ["get_property", "volume"] }
{ "data": 50.0, "error": "success" }

get_property_string

Like get_property, but the resulting data will always be a string.

Example:

{ "command": ["get_property_string", "volume"] }
{ "data": "50.000000", "error": "success" }

set_property

Set the given property to the given value. See Properties for more information about properties.

Example:

{ "command": ["set_property", "pause", true] }
{ "error": "success" }

set_property_string

Like set_property, but the argument value must be passed as string.

Example:

{ "command": ["set_property_string", "pause", "yes"] }
{ "error": "success" }

observe_property

Watch a property for changes. If the given property is changed, then an event of type
property-change will be generated

Example:

{ "command": ["observe_property", 1, "volume"] }
{ "error": "success" }
{ "event": "property-change", "id": 1, "data": 52.0, "name": "volume" }

observe_property_string

Like observe_property, but the resulting data will always be a string.

Example:

{ "command": ["observe_property_string", 1, "volume"] }
{ "error": "success" }
{ "event": "property-change", "id": 1, "data": "52.000000", "name": "volume" }

unobserve_property

Undo observe_property or observe_property_string. This requires the numeric id passed
to the observe command as argument.

Example:

{ "command": ["unobserve_property", 1] }
{ "error": "success" }

request_log_messages

Enable output of mpv log messages. They will be received as events. The parameter to this
command is the log-level (see mpv_request_log_messages C API function).

Log message output is meant for humans only (mostly for debugging). Attempting to retrieve
information by parsing these messages will just lead to breakages with future mpv releases. Instead,
make a feature request, and ask for a proper event that returns the information you need.

enable_event, disable_event

Enables or disables the named event. Mirrors the mpv_request_event C API function. If the string
all is used instead of an event name, all events are enabled or disabled.

By default, most events are enabled, and there is not much use for this command.

suspend

Suspend the mpv main loop. There is a long-winded explanation of this in the C API function
mpv_suspend(). In short, this prevents the player from displaying the next video frame, so that you
don't get blocked when trying to access the player.

resume

Undo one suspend call. suspend increments an internal counter, and resume decrements it.
When 0 is reached, the player is actually resumed.

get_version

Returns the client API version the C API of the remote mpv instance provides. (Also see
DOCS/client-api-changes.rst.)

UTF-8
Normally, all strings are in UTF-8. Sometimes it can happen that strings are in some broken encoding
(often happens with file tags and such, and filenames on many Unixes are not required to be in UTF-8
either). This means that mpv sometimes sends invalid JSON. If that is a problem for the client
application's parser, it should filter the raw data for invalid UTF-8 sequences and perform the desired
replacement, before feeding the data to its JSON parser.

mpv will not attempt to construct invalid UTF-8 with broken escape sequences.

CHANGELOG
There is no real changelog, but you can look at the following things:

• The release changelog, which should contain most user-visible changes, including new features and
bug fixes:

https://github.com/mpv-player/mpv/releases

• The git log, which is the "real" changelog

• The file mplayer-changes.rst in the DOCS sub directory on the git repository, which used to be
in place of this section. It documents some changes that happened since mplayer2 forked off
MPlayer.

ENVIRONMENT VARIABLES
There are a number of environment variables that can be used to control the behavior of mpv.

HOME, XDG_CONFIG_HOME

Used to determine mpv config directory. If XDG_CONFIG_HOME is not set, $HOME/.config/mpv is
used.

$HOME/.mpv is always added to the list of config search paths with a lower priority.

XDG_CONFIG_DIRS

If set, XDG-style system configuration directories are used. Otherwise, the UNIX convention
(PREFIX/etc/mpv/) is used.

TERM

Used to determine terminal type.

MPV_HOME

Directory where mpv looks for user settings. Overrides HOME, and mpv will try to load the config file as
$MPV_HOME/mpv.conf.

MPV_VERBOSE (see also -v and --msg-level)

Set the initial verbosity level across all message modules (default: 0). This is an integer, and the
resulting verbosity corresponds to the number of --v options passed to the command line.

MPV_LEAK_REPORT

If set to 1, enable internal talloc leak reporting. Note that this can cause trouble with multithreading,
so only developers should use this.

LADSPA_PATH

https://github.com/mpv-player/mpv/releases

Specifies the search path for LADSPA plugins. If it is unset, fully qualified path names must be used.

DISPLAY

Standard X11 display name to use.

FFmpeg/Libav:

This library accesses various environment variables. However, they are not centrally documented,
and documenting them is not our job. Therefore, this list is incomplete.

Notable environment variables:

http_proxy

URL to proxy for http:// and https:// URLs.

no_proxy

List of domain patterns for which no proxy should be used. List entries are separated by ,.
Patterns can include *.

libdvdcss:

DVDCSS_CACHE

Specify a directory in which to store title key values. This will speed up descrambling of DVDs
which are in the cache. The DVDCSS_CACHE directory is created if it does not exist, and a
subdirectory is created named after the DVD's title or manufacturing date. If DVDCSS_CACHE is
not set or is empty, libdvdcss will use the default value which is ${HOME}/.dvdcss/ under
Unix and the roaming application data directory (%APPDATA%) under Windows. The special value
"off" disables caching.

DVDCSS_METHOD

Sets the authentication and decryption method that libdvdcss will use to read scrambled discs.
Can be one of title, key or disc.

key

is the default method. libdvdcss will use a set of calculated player keys to try and get the
disc key. This can fail if the drive does not recognize any of the player keys.

disc

is a fallback method when key has failed. Instead of using player keys, libdvdcss will crack
the disc key using a brute force algorithm. This process is CPU intensive and requires 64
MB of memory to store temporary data.

title

is the fallback when all other methods have failed. It does not rely on a key exchange with
the DVD drive, but rather uses a crypto attack to guess the title key. On rare cases this may
fail because there is not enough encrypted data on the disc to perform a statistical attack,
but on the other hand it is the only way to decrypt a DVD stored on a hard disc, or a DVD
with the wrong region on an RPC2 drive.

DVDCSS_RAW_DEVICE

Specify the raw device to use. Exact usage will depend on your operating system, the Linux
utility to set up raw devices is raw(8) for instance. Please note that on most operating systems,
using a raw device requires highly aligned buffers: Linux requires a 2048 bytes alignment (which
is the size of a DVD sector).

DVDCSS_VERBOSE

Sets the libdvdcss verbosity level.

0: Outputs no messages at all.

1: Outputs error messages to stderr.

2: Outputs error messages and debug messages to stderr.

DVDREAD_NOKEYS

Skip retrieving all keys on startup. Currently disabled.

HOME

FIXME: Document this.

EXIT CODES
Normally mpv returns 0 as exit code after finishing playback successfully. If errors happen, the following
exit codes can be returned:

1: Error initializing mpv. This is also returned if unknown options are passed to
mpv.

2: The file passed to mpv couldn't be played. This is somewhat fuzzy: currently,
playback of a file is considered to be successful if initialization was mostly
successful, even if playback fails immediately after initialization.

3: There were some files that could be played, and some files which couldn't
(using the definition of success from above).

4: Quit due to a signal, Ctrl+c in a VO window (by default), or from the default quit
key bindings in encoding mode.

Note that quitting the player manually will always lead to exit code 0, overriding the exit code that would
be returned normally. Also, the quit input command can take an exit code: in this case, that exit code is
returned.

FILES
For Windows-specifics, see FILES ON WINDOWS section.

/usr/local/etc/mpv/mpv.conf

mpv system-wide settings (depends on --prefix passed to configure - mpv in default configuration
will use /usr/local/etc/mpv/ as config directory, while most Linux distributions will set it to
/etc/mpv/).

~/.config/mpv/mpv.conf

mpv user settings (see CONFIGURATION FILES section)

~/.config/mpv/input.conf

key bindings (see INPUT.CONF section)

~/.config/mpv/scripts/

All files in this directory are loaded as if they were passed to the --script option. They are loaded
in alphabetical order, and sub-directories and files with no .lua extension are ignored. The
--load-scripts=no option disables loading these files.

~/.config/mpv/watch_later/

Contains temporary config files needed for resuming playback of files with the watch later feature.
See for example the Q key binding, or the quit_watch_later input command.

Each file is a small config file which is loaded if the corresponding media file is loaded. It contains the
playback position and some (not necessarily all) settings that were changed during playback. The
filenames are hashed from the full paths of the media files. It's in general not possible to extract the
media filename from this hash. However, you can set the
--write-filename-in-watch-later-config option, and the player will add the media
filename to the contents of the resume config file.

~/.config/mpv/lua-settings/osc.conf

This is loaded by the OSC script. See the ON SCREEN CONTROLLER docs for details.

Other files in this directory are specific to the corresponding scripts as well, and the mpv core doesn't
touch them.

Note that the environment variables $XDG_CONFIG_HOME and $MPV_HOME can override the standard
directory ~/.config/mpv/.

Also, the old config location at ~/.mpv/ is still read, and if the XDG variant does not exist, will still be
preferred.

FILES ON WINDOWS
On win32 (if compiled with MinGW, but not Cygwin), the default config file locations are different. They are
generally located under %APPDATA%/mpv/. For example, the path to mpv.conf is
%APPDATA%/mpv/mpv.conf, which maps to a system and user-specific path, for example

C:\users\USERNAME\Application Data\mpv\mpv.conf

You can find the exact path by running echo %APPDATA%\mpv\mpv.conf in cmd.exe.

Other config files (such as input.conf) are in the same directory. See the FILES section above.

The environment variable $MPV_HOME completely overrides these, like on UNIX.

If a directory named portable_config next to the mpv.exe exists, all config will be loaded from this
directory only. Watch later config files are written to this directory as well. (This exists on Windows only
and is redundant with $MPV_HOME. However, since Windows is very scripting unfriendly, a wrapper script
just setting $MPV_HOME, like you could do it on other systems, won't work. portable_config is
provided for convenience to get around this restriction.)

Config files located in the same directory as mpv.exe are loaded with lower priority. Some config files
are loaded only once, which means that e.g. of 2 input.conf files located in two config directories, only
the one from the directory with higher priority will be loaded.

A third config directory with lowest priority is the directory named mpv in the same directory as mpv.exe.
This used to be the directory with highest priority, but is now discouraged to use and might be removed in
the future.

Note that mpv likes to mix / and \ path separators for simplicity. kernel32.dll accepts this, but cmd.exe
does not.

EXAMPLES OF MPV USAGE
Blu-ray playback:

• mpv bd:////path/to/disc

• mpv bd:// --bluray-device=/path/to/disc
Play in Japanese with English subtitles:

mpv dvd://1 --alang=ja --slang=en

Play only chapters 5, 6, 7:

mpv dvd://1 --chapter=5-7

Play only titles 5, 6, 7:

mpv dvd://5-7

Play a multi-angle DVD:

mpv dvd://1 --dvd-angle=2

Play from a different DVD device:

mpv dvd://1 --dvd-device=/dev/dvd2

Play DVD video from a directory with VOB files:

mpv dvd://1 --dvd-device=/path/to/directory/

Stream from HTTP:

mpv http://example.com/example.avi

Stream using RTSP:

mpv rtsp://server.example.com/streamName

Play a libavfilter graph:

mpv avdevice://lavfi:mandelbrot

AUTHORS
mpv is a MPlayer fork based on mplayer2, which in turn is a fork of MPlayer.

MPlayer was initially written by Arpad Gereoffy. See the AUTHORS file for a list of some of the many other
contributors.

MPlayer is (C) 2000-2013 The MPlayer Team

This man page was written mainly by Gabucino, Jonas Jermann and Diego Biurrun.

	SYNOPSIS
	DESCRIPTION
	INTERACTIVE CONTROL
	Keyboard Control
	Mouse Control

	USAGE
	Escaping spaces and other special characters
	Paths
	Per-File Options

	CONFIGURATION FILES
	Location and Syntax
	Escaping spaces and special characters
	Putting Command Line Options into the Configuration File
	File-specific Configuration Files
	Profiles

	TAKING SCREENSHOTS
	TERMINAL STATUS LINE
	PROTOCOLS
	PSEUDO GUI MODE
	OPTIONS
	Track Selection
	Playback Control
	Program Behavior
	Video
	Audio
	Subtitles
	Window
	Disc Devices
	Equalizer
	Demuxer
	Input
	OSD
	Screenshot
	Software Scaler
	Terminal
	TV
	Cache
	Network
	DVB
	PVR
	Miscellaneous

	AUDIO OUTPUT DRIVERS
	VIDEO OUTPUT DRIVERS
	AUDIO FILTERS
	VIDEO FILTERS
	ENCODING
	COMMAND INTERFACE
	input.conf
	General Input Command Syntax
	List of Input Commands
	Input Commands that are Possibly Subject to Change
	Hooks

	Input Command Prefixes
	Input Sections
	Properties
	Property list
	Property Expansion
	Raw and Formatted Properties

	ON SCREEN CONTROLLER
	Using the OSC
	The Interface
	Key Bindings

	Configuration
	Config Syntax
	Command-line Syntax
	Configurable Options
	Script Commands

	LUA SCRIPTING
	Example
	Details on the script initialization and lifecycle
	mp functions
	Advanced mp functions
	mp.msg functions
	mp.options functions
	mp.utils options
	Events
	List of events
	Extras

	JSON IPC
	Socat example
	Protocol
	Commands
	UTF-8

	CHANGELOG
	ENVIRONMENT VARIABLES
	EXIT CODES
	FILES
	FILES ON WINDOWS
	EXAMPLES OF MPV USAGE
	AUTHORS

